• Title/Summary/Keyword: 최대수요전력 예측

Search Result 70, Processing Time 0.024 seconds

The Optimal Bidding Strategy based on Error Backpropagation Algorithm in a Two-Way Bidding Pool Applying Cournot Model (쿠르노 모형을 적용한 양방향입찰 풀시장에서 오차 역전파 알고리즘을 이용한 최적 입찰전략수립)

  • Kwon, Byeong-Gook;Lee, Seung-Chul;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.475-478
    • /
    • 2003
  • 본 논문에서는 쿠르노 모형을 적용한 양방향입찰 전력 풀시장에서 입찰에 참여하는 발전기가 최대 이익을 얻기 위한 입찰전략으로서 신경회로망의 오차 역전파 알고리즘을 이용하여 최적 입찰발전량과 입찰가격을 수립하는 기법에 관하여 연구한다. 전력시장 환경은 n 개의 발전기들이 참여하는 비협조적 불완전정보 시장으로 설정하고 Bayesian의 조건부 확률이론을 적용하여 상대 발전기들의 발전비용함수와 시장의 수요함수를 추정하여 발전기 상호간 쿠르노-내쉬균형점을 이루는 최적 입찰발전량을 예측한다. 그리고 이익을 극대화시키기 위해 오차 역전파 알고리즘을 이용하여 시장의 가격 탄력성과 쿠르노 시장균형가격에 연결가중치를 조절함으로써 입찰가격이 계통한계가격에 근접하도록 최적 입찰전략을 수립한다.

  • PDF

Effect of Power Output Reduction on the System Marginal Price and Green House Gas Emission in Coal-Fired Power Generation (석탄화력발전 출력감소가 계통한계가격 및 온실가스 배출량에 미치는 영향)

  • Lim, Jiyong;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2018
  • This study analyzed the effect of power output reduction in coal fired power generation on the change of system marginal price and green house gas emissions. Analytical method was used for electricity market forecasting system used in korea state owned companies. Operating conditions of the power system was based on the the 7th Basic Plan for Electricity Demand and Supply. This as a reference, I analyzed change of system marginal price and green house gas emission by reduced power output in coal fired power generation. The results, if the maximum output was declined as 29 [%] to overall coal-fired power plant, system marginal price is reduced 12 [%p] compared to before and decreasing greenhouse gas emissions were 9,966 [kton]. And if the low efficiency coal fired power plant that accounted for 30 [%] in overall coal-fired power plant stopped by year, system marginal price is reduced 14 [%p] compared to before and decreasing greenhouse gas emissions were 12,874 [kton].

  • PDF

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상 변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • 고희석;이충식;최종규;지봉호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.

  • PDF

Development of Daily Peak Power Demand Forecasting Algorithm with Hybrid Type composed of AR and Neuro-Fuzzy Model (자기회귀모델과 뉴로-퍼지모델로 구성된 하이브리드형태의 일별 최대 전력 수요예측 알고리즘 개발)

  • Park, Yong-San;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.189-194
    • /
    • 2014
  • Due to the increasing of power consumption, it is difficult to construct accurate prediction model for daily peak power demand. It is very important work to know power demand in next day for manager and control power system. In this research, we develop a daily peak power demand prediction method based on hybrid type composed of AR and Neuro-Fuzzy model. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models (다중회귀모형을 이용한 104주 주 최대 전력수요예측)

  • Jung, Hyun-Woo;Kim, Si-Yeon;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • Koh, H.S.;Lee, C.S.;Choy, J.K.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.292-294
    • /
    • 2000
  • This paper is presented the method peak load forecast based on multiple regression Model. Forecasting model was composed with the temperature-humidity and the discomfort index. Also the week periodicity was excluded from weekday change coefficient of two types. Forecasting result was good with about 3[%]. And, utility of presented forecast model using statistical tests has been proved. Therefore, This results establish appropriateness and fitness of forecast models using peak power demand forecasting.

  • PDF

Short-term Peak Load Forecasting using Regression Models and Neural Networks (회귀모형과 신경회로망 모형을 이용한 단기 최대전력수요예측)

  • Koh, Hee-Seog;Ji, Bong-Ho;Lee, Hyun-Moo;Lee, Chung-Sik;Lee, Chul-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.295-297
    • /
    • 2000
  • In case of power demand forecasting the most important problem is to deal with the load of special-days, Accordingly, this paper presents a method that forecasting special-days load with regression models and neural networks. Special-days load in summer season was forecasted by the multiple regression models using weekday change ratio Neural networks models uses pattern conversion ratio, and orthogonal polynomial models was directly forecasted using past special-days load data. forecasting result obtains % forecast error of about $1{\sim}2[%]$. Therefore, it is possible to forecast long and short special-days load.

  • PDF

Development of Daily Peak Power Demand Forecasting Algorithm Considering of Characteristics of Day of Week (요일 특성을 고려한 일별 최대 전력 수요예측 알고리즘 개발)

  • Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.307-311
    • /
    • 2014
  • Due to the increasing of power consumption, it is difficult to construct accurate prediction model for daily peak power demand. It is very important work to know power demand in next day for manager and control power system. In this research, we develop a daily peak power demand prediction method considering of characteristics of day of week. The proposed method is composed of liner model based on AR model and nonlinear model based on ELM to resolve the limitation of a single model. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

Weekly maximum power demand forecasting using model in consideration of temperature estimation (기온예상치를 고려한 모델에 의한 주간최대전력수요예측)

  • 고희석;이충식;김종달;최종규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.511-516
    • /
    • 1996
  • In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.

  • PDF

Development of Daily Peak Power Demand Forecasting Algorithm using ELM (ELM을 이용한 일별 최대 전력 수요 예측 알고리즘 개발)

  • Ji, Pyeong-Shik;Kim, Sang-Kyu;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • Due to the increase of power consumption, it is difficult to construct an accurate prediction model for daily peak power demand. It is very important work to know power demand in next day to manage and control power system. In this research, we develop a daily peak power demand prediction method based on Extreme Learning Machine(ELM) with fast learning procedure. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.