최대수요전력 관리 장치는 현재 사용전력을 모니터링하여 예측 전력을 계산해 수용가에서 설정한 목표전력을 초과하지 않게 부하를 제어하는 장치이다. 부하의 제어는 예측된 최대수요전력이 목표전력을 초과할 경우 경보를 발생하고 부하를 차단하는 방식을 사용하기 때문에 최대수요전력에 대한 정확한 예측이 중요하다. 전력 변동이 심한 수용가에서는 기존의 예측 방법을 사용할 경우 최대수요전력 관리가 안정적이지 못하다는 단점이 있다. 본 논문에서는 기존의 최대수요전력 예측 방법 및 지수평활방법을 살펴보고 칼만 필터를 사용한 예측 방법을 제안한다.
본 논문은 도서지역 전력수요 특성을 분석하고, 전력수요와 관련 있는 인자들과의 상관성 분석을 통한 도서지역의 최대 전력수요 예측 방안을 제시하였다. 과거 선행연구와의 예측 결과 비교를 통하여 예측 방안의 우수성을 검증하였고, 이를 바탕으로 도서지역 최대 전력수요 전망을 분석하였다.
최대전력수요를 분석함에 있어 발생 당시의 기온 실적이 반영된 실적 최대전력만을 사용함으로 다양한 통계적 착시현상이 나타나고 있다. 평균적인 기상 상태에서의 최대전력수요를 측정하기 어려워 신뢰성있는 예측수요를 도출하기에도 많은 한계가 발생한다. 따라서 역사적 기온데이터에 기반한 정상적인 기온분포를 "표준기온분포"로 새롭게 정의하고, 이를 반영한 최대전력수요를 "기온보정 최대전력 수요"로 규정함으로써, 기존의 통계적 착시현상을 배제하고, 정확도 높은 최대전력 수요 예측치를 도출하여, 안정적 전력수급에 큰 기여가 있을 것으로 기대한다. 또한 본 연구에서는 기온보정 최대전력을 도출하기 위해 공적분 및 오차수정이론을 반영하여 모형화하였고, 엄격한 통계적 방법론을 이용하여 관련 모형을 검증하였다.
전력수요는 다양한 외부요인으로부터 영향을 받으므로 전력수요 예측 시 각 요인과의 상관관계를 고려할 필요가 있다. 본 논문은 Stepwise 다중회귀분석법을 이용한 일일 최대전력수요 예측 방법을 제시하였다. 사례연구에서는 2014년 평일 전력수요데이터를 이용하여 제안된 예측방법을 적용하고 그 결과를 평가하였다.
최근 일별 최대 전력수요 예측은 전력설비 계획 및 운용에 매우 중요한 사안으로 주목받고 있다. 본 연구는 일별 최대 전력수요 예측을 위하여 대표적 시계열 모형을 소개하고, 예측의 성능 비교를 위하여 RMSE(Root mean squared error)와 MAPE(Mean absolute percentage error)를 사용한다. 연구결과로 보완된 Holt-Winters 모형과 Reg-ARIMA 모형이 다른 모형에 비하여 우수한 예측 성능을 보였다.
본 연구를 통하여 전력수급계획에 필요한 연간 시간대별 총수요를 예측하는 산법을 개발하였다. 예측과정은 크게 평상일 예측과 특수일 예측으로 구분된다. 평상일의 경우는, 연중 최대수요가 발생하는 하절기 기상으로부터 연중 최대수요를 예측한 다음, 하향식 접근에 의해 주간-일간-시간대별 평상일 수요를 예측하며, 특수일 수요는 예측된 평상일 수요와 평상일 대비 상대계수 모형으로부터 예측한다. 예측의 정확도를 개선하기 위하여 시계열 자료에 가중치를 부여하고, 실적자료가 생길 때마다 자동으로 모형이 갱신되도록 하였으며, 수요예측 결과를 검증, 보정하기 위해 주간수요예측을 재수행할 수 있다. 또한 계획된 월간 전력량 제약에 협조하는 예측산법도 포함하였다.
발전소 관리의 단기 전력 수요에 대한 정확한 예측은 전력 시스템의 안전하고 효율적인 작동을 보장하는데 필수적이다. 따라서 본 연구는 가우스 커널 함수 네트워크 (GKFNs)의 심층 구조를 이용하여 일일 최대 전력 수요를 예측하는 새로운 방법을 제시한다. 제안 된 GKFN의 깊이 구조는 표준 GKFN에 비해 예측 정확도를 향상시킨다. 한국의 일일 최대 전력 수요를 예측하기위한 시뮬레이션은 제안 된 예측 모델이 GKFN 모델, k-NN 및 SVR과 같은 다른 예측 모델에 비해 예측 성능에 이점이 있음을 보여준다. GKFN의 제안된 심층 구조는 시계열 예측 및 회귀 문제의 다양한 문제에 적용될 수 있다.
이 논문에서는 여름철 일일 전력수요 총량을 예측하는 회귀모형을 개발한다. 경제적인 전력 생산계획을 수립하기위해 예측 오차율을 낮추는 것은 매우 중요하다. 전력수요가 크게 증가하는 여름철 전력수요를 예측하기위해 기존 연구에서는 외기온도 및 직전일 전력수요를 고려하였으나, 이 논문에서는 기존 연구에서 제시한 예측 오차율을 개선하기 위해 전력수요의 요일별 특성을 추가적으로 고려한 회귀모형을 개발한다. 이 논문에서는 여름철 전력수요의 요일별 패턴은 최고차항의 계수가 음수인 2차 함수 형태를 나타냄을 확인하였다. 즉, 2005년부터 2009년까지 5년간의 여름철 전력수요 패턴을 살펴본 결과 전력수요 총량은 일요일에 가장 낮고 월요일부터 증가하다가 수요일이나 목요일부터 다시 감소하는 패턴을 보인다. 이 논문에서 제안하는 여름철 전력수요 예측 회귀모형의 타당성을 검증하기 위해 2005년부터 2009년까지 실제 전력수요 데이터를 바탕으로 여름철 전력수요 총량을 예측한 결과, 평균 오차율(MAPE: Mean Absolute Percentage Error)과 최대 오차율(MPE: Maximum Percentage Error)이 각각 3.08%와 8.99%를 넘지 않는 수준임을 확인하였다. 또한 기존 연구에서 제시한 방법과 비교하여도 평균 오차율과 최대 오차율 모두 기존 연구에서 제시한 오차율보다 우수함을 확인하였다.
전력 수요 예측은 전력계통 운용 및 계통 개발의 기본이 되는 것으로 예측의 적부가 전력공급의 신뢰성과 경제성에 미치는 영향이 대단이 크다. 본 논문에서는 예측정도가 높고 운용시 간편성을 지닌 R.G.Brown에 의해 제시된 3중 지수평활법을 이용하여 장기 최대전력수요를 예측하였다. 평활함수는 전체 과거 관측의 선형 결합이고 과거 관측에 주는 가중은 오래된 과거일수록 지수적으로 감소시킨다. 지수평활의 근본 이론은 지수평활의 (n+1)차의 선형결합으로 n차 다항식 모델에서 (n+1)개의 계수추정이 가능함을 보여준다. 이 기법을 이용하여 한국전력 실 계통에 최대전력 수요를 예측한 결과 예측의 정확성과 간편성이 입증되었다.
본 논문에서는 특수일 전력 수요 예측을 위한 알고리즘을 제시하였다. 논문에서 제안하는 전력 수요 예측 알고리즘은 데이터 마이닝을 이용한 데이터 전처리 부분과 전처리된 데이터를 사용하여 특수일 수요를 예측하는 다항 회귀분석 부분으로 나누어진다. 데이터 전처리에서는 전력 수요 예측을 위한 과거 데이터 중에 과거 특수일 수요의 패턴을 잘 보여주는 데이터를 찾기 위해 온도와 수요의 관계를 이용한다. 데이터 마이닝의 기준으로 결정계수를 사용하였으며, 알고리즘은 k-nearest neighbor 절차를 사용하였다. 또한 제안된 기법은 2006년 특수일 전력 수요 예측을 통하여 기존 논문의 결과와 비교 분석하여 기존 방식 대비 특수일 전력 수요예측 관련 우수성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.