• 제목/요약/키워드: 최대수요전력 예측

검색결과 70건 처리시간 0.033초

최대수요전력 관리 장치의 최대수요전력 예측 방법에 관한 연구 (Method of Demand Forecasting for Demand Controller)

  • 권용훈;김호진;공인엽
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.833-836
    • /
    • 2012
  • 최대수요전력 관리 장치는 현재 사용전력을 모니터링하여 예측 전력을 계산해 수용가에서 설정한 목표전력을 초과하지 않게 부하를 제어하는 장치이다. 부하의 제어는 예측된 최대수요전력이 목표전력을 초과할 경우 경보를 발생하고 부하를 차단하는 방식을 사용하기 때문에 최대수요전력에 대한 정확한 예측이 중요하다. 전력 변동이 심한 수용가에서는 기존의 예측 방법을 사용할 경우 최대수요전력 관리가 안정적이지 못하다는 단점이 있다. 본 논문에서는 기존의 최대수요전력 예측 방법 및 지수평활방법을 살펴보고 칼만 필터를 사용한 예측 방법을 제안한다.

  • PDF

도서지역 최대 전력수요 전망 분석 (An analysis on the Maximum Electric Load Outlook for Island Areas)

  • 정현우;서인용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.489-490
    • /
    • 2015
  • 본 논문은 도서지역 전력수요 특성을 분석하고, 전력수요와 관련 있는 인자들과의 상관성 분석을 통한 도서지역의 최대 전력수요 예측 방안을 제시하였다. 과거 선행연구와의 예측 결과 비교를 통하여 예측 방안의 우수성을 검증하였고, 이를 바탕으로 도서지역 최대 전력수요 전망을 분석하였다.

  • PDF

최대전력수요의 기온보정방법 및 활용에 대한 연구 (A Study on the Temperature Adjusting Method of Maximum Demand of Electricity)

  • 박종인;김광인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.616-617
    • /
    • 2011
  • 최대전력수요를 분석함에 있어 발생 당시의 기온 실적이 반영된 실적 최대전력만을 사용함으로 다양한 통계적 착시현상이 나타나고 있다. 평균적인 기상 상태에서의 최대전력수요를 측정하기 어려워 신뢰성있는 예측수요를 도출하기에도 많은 한계가 발생한다. 따라서 역사적 기온데이터에 기반한 정상적인 기온분포를 "표준기온분포"로 새롭게 정의하고, 이를 반영한 최대전력수요를 "기온보정 최대전력 수요"로 규정함으로써, 기존의 통계적 착시현상을 배제하고, 정확도 높은 최대전력 수요 예측치를 도출하여, 안정적 전력수급에 큰 기여가 있을 것으로 기대한다. 또한 본 연구에서는 기온보정 최대전력을 도출하기 위해 공적분 및 오차수정이론을 반영하여 모형화하였고, 엄격한 통계적 방법론을 이용하여 관련 모형을 검증하였다.

  • PDF

Stepwise 다중회귀분석을 이용한 최대전력수요와 기상과의 상관관계 분석 (The Relationship between Daily Peak Load and Weather Conditions Using Stepwise Multiple Regression)

  • 차지원;이동건;김현진;주성관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.475-476
    • /
    • 2015
  • 전력수요는 다양한 외부요인으로부터 영향을 받으므로 전력수요 예측 시 각 요인과의 상관관계를 고려할 필요가 있다. 본 논문은 Stepwise 다중회귀분석법을 이용한 일일 최대전력수요 예측 방법을 제시하였다. 사례연구에서는 2014년 평일 전력수요데이터를 이용하여 제안된 예측방법을 적용하고 그 결과를 평가하였다.

  • PDF

시계열 모형을 이용한 일별 최대 전력 수요 예측 연구 (Daily Peak Load Forecasting for Electricity Demand by Time series Models)

  • 이정순;손흥구;김삼용
    • 응용통계연구
    • /
    • 제26권2호
    • /
    • pp.349-360
    • /
    • 2013
  • 최근 일별 최대 전력수요 예측은 전력설비 계획 및 운용에 매우 중요한 사안으로 주목받고 있다. 본 연구는 일별 최대 전력수요 예측을 위하여 대표적 시계열 모형을 소개하고, 예측의 성능 비교를 위하여 RMSE(Root mean squared error)와 MAPE(Mean absolute percentage error)를 사용한다. 연구결과로 보완된 Holt-Winters 모형과 Reg-ARIMA 모형이 다른 모형에 비하여 우수한 예측 성능을 보였다.

전력수급계획을 위한 연간수요예측 산법 (Yearly Load Forecasting Algorithm for Annual Electric Energy Supply Plan)

  • 황갑주;주행로;이명희;안대훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.76-77
    • /
    • 2006
  • 본 연구를 통하여 전력수급계획에 필요한 연간 시간대별 총수요를 예측하는 산법을 개발하였다. 예측과정은 크게 평상일 예측과 특수일 예측으로 구분된다. 평상일의 경우는, 연중 최대수요가 발생하는 하절기 기상으로부터 연중 최대수요를 예측한 다음, 하향식 접근에 의해 주간-일간-시간대별 평상일 수요를 예측하며, 특수일 수요는 예측된 평상일 수요와 평상일 대비 상대계수 모형으로부터 예측한다. 예측의 정확도를 개선하기 위하여 시계열 자료에 가중치를 부여하고, 실적자료가 생길 때마다 자동으로 모형이 갱신되도록 하였으며, 수요예측 결과를 검증, 보정하기 위해 주간수요예측을 재수행할 수 있다. 또한 계획된 월간 전력량 제약에 협조하는 예측산법도 포함하였다.

  • PDF

기계학습 모델을 활용한 일일 최대 전력 수요 분석 (Daily maximum power demand analysis using machine learning model)

  • 이태호;김민우;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.157-158
    • /
    • 2019
  • 발전소 관리의 단기 전력 수요에 대한 정확한 예측은 전력 시스템의 안전하고 효율적인 작동을 보장하는데 필수적이다. 따라서 본 연구는 가우스 커널 함수 네트워크 (GKFNs)의 심층 구조를 이용하여 일일 최대 전력 수요를 예측하는 새로운 방법을 제시한다. 제안 된 GKFN의 깊이 구조는 표준 GKFN에 비해 예측 정확도를 향상시킨다. 한국의 일일 최대 전력 수요를 예측하기위한 시뮬레이션은 제안 된 예측 모델이 GKFN 모델, k-NN 및 SVR과 같은 다른 예측 모델에 비해 예측 성능에 이점이 있음을 보여준다. GKFN의 제안된 심층 구조는 시계열 예측 및 회귀 문제의 다양한 문제에 적용될 수 있다.

  • PDF

요일 요인을 고려한 하절기 전력수요 예측 (The Load Forecasting in Summer Considering Day Factor)

  • 한정희;백종관
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.2793-2800
    • /
    • 2010
  • 이 논문에서는 여름철 일일 전력수요 총량을 예측하는 회귀모형을 개발한다. 경제적인 전력 생산계획을 수립하기위해 예측 오차율을 낮추는 것은 매우 중요하다. 전력수요가 크게 증가하는 여름철 전력수요를 예측하기위해 기존 연구에서는 외기온도 및 직전일 전력수요를 고려하였으나, 이 논문에서는 기존 연구에서 제시한 예측 오차율을 개선하기 위해 전력수요의 요일별 특성을 추가적으로 고려한 회귀모형을 개발한다. 이 논문에서는 여름철 전력수요의 요일별 패턴은 최고차항의 계수가 음수인 2차 함수 형태를 나타냄을 확인하였다. 즉, 2005년부터 2009년까지 5년간의 여름철 전력수요 패턴을 살펴본 결과 전력수요 총량은 일요일에 가장 낮고 월요일부터 증가하다가 수요일이나 목요일부터 다시 감소하는 패턴을 보인다. 이 논문에서 제안하는 여름철 전력수요 예측 회귀모형의 타당성을 검증하기 위해 2005년부터 2009년까지 실제 전력수요 데이터를 바탕으로 여름철 전력수요 총량을 예측한 결과, 평균 오차율(MAPE: Mean Absolute Percentage Error)과 최대 오차율(MPE: Maximum Percentage Error)이 각각 3.08%와 8.99%를 넘지 않는 수준임을 확인하였다. 또한 기존 연구에서 제시한 방법과 비교하여도 평균 오차율과 최대 오차율 모두 기존 연구에서 제시한 오차율보다 우수함을 확인하였다.

지수평활에 의한 장기 최대전력 수요 예측에 관한 연구 (A Study on Long-term Maximum power Demand Forescasting Using Exponential Smoothing)

  • 고희석;이태기
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제6권3호
    • /
    • pp.43-49
    • /
    • 1992
  • 전력 수요 예측은 전력계통 운용 및 계통 개발의 기본이 되는 것으로 예측의 적부가 전력공급의 신뢰성과 경제성에 미치는 영향이 대단이 크다. 본 논문에서는 예측정도가 높고 운용시 간편성을 지닌 R.G.Brown에 의해 제시된 3중 지수평활법을 이용하여 장기 최대전력수요를 예측하였다. 평활함수는 전체 과거 관측의 선형 결합이고 과거 관측에 주는 가중은 오래된 과거일수록 지수적으로 감소시킨다. 지수평활의 근본 이론은 지수평활의 (n+1)차의 선형결합으로 n차 다항식 모델에서 (n+1)개의 계수추정이 가능함을 보여준다. 이 기법을 이용하여 한국전력 실 계통에 최대전력 수요를 예측한 결과 예측의 정확성과 간편성이 입증되었다.

  • PDF

결정계수 기반의 데이터 마이닝을 이용한 특수일 최대 전력 수요 예측 (Load Forecasting for the Holidays Using a Data mining with the Coefficient of Determination)

  • 위영민;송경빈;주성관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.552-553
    • /
    • 2008
  • 본 논문에서는 특수일 전력 수요 예측을 위한 알고리즘을 제시하였다. 논문에서 제안하는 전력 수요 예측 알고리즘은 데이터 마이닝을 이용한 데이터 전처리 부분과 전처리된 데이터를 사용하여 특수일 수요를 예측하는 다항 회귀분석 부분으로 나누어진다. 데이터 전처리에서는 전력 수요 예측을 위한 과거 데이터 중에 과거 특수일 수요의 패턴을 잘 보여주는 데이터를 찾기 위해 온도와 수요의 관계를 이용한다. 데이터 마이닝의 기준으로 결정계수를 사용하였으며, 알고리즘은 k-nearest neighbor 절차를 사용하였다. 또한 제안된 기법은 2006년 특수일 전력 수요 예측을 통하여 기존 논문의 결과와 비교 분석하여 기존 방식 대비 특수일 전력 수요예측 관련 우수성을 검증하였다.

  • PDF