• Title/Summary/Keyword: 최대수요전력 관리 장치

Search Result 13, Processing Time 0.018 seconds

DSM Program of Domestic Diffusion for Demand Controller (최대전력관리장치 보급확대를 위한 수요관리 프로그램 개발)

  • Lee, Hak-Ju;Lee, Han-Byul;Park, Jae-Duck;Kum, Byung-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.345-347
    • /
    • 2005
  • The electric demands increase, financial need for new power plant constructions and environmental problem have led to search for more efficient energy production and load management. To minimize the construction of power plants and reduce total power consumption include installation of demand controller to industrial applications. Accordingly to maximize the load control by the diffusion of demand controller, govermental economic supports as well as the analysis of energy saving effects. This paper presents the cost-effectiveness analysis for DSM program evaluation and case study to analyze demand controller DSM program.

  • PDF

Fabrication and Evaluation of Digital Signal Processor for Multi-Lane Energy Measurement System (개별 전로 전력 계측을 위한 디지털 신호처리 프로세서 기반 전력 관제 시스템의 제작 및 평가)

  • Kim, Geun-Jun;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.619-623
    • /
    • 2018
  • Due to the development of society, the demand for electric power has increased and the quality control of electric power has become an important issue. In order to efficiently perform such power management, we propose a DSP based power measurement system for multi-wire power measurement. Since the conventional power measurement system can measure only the power of one line, a power quality measurement device is required for each line in order to measure the power quality of the individual line. Respectively. The system proposed in this paper proposes a system capable of real-time measurement of power quality at up to 12 points using digital signal processing algorithm, and the prototype based on this system was evaluated through the official test report of Korea Electrotechnology Research Institute. As a result of the performance test, it was evaluated that the error range is excellent at ${\pm}0.3%$.

Electric Power Energy Saving and Efficient Measures in Buildings using the Smart-Meter (스마트미터를 활용한 건축물의 전력에너지 절감 및 효율화 방안)

  • Hwang, Hyun Bae;Jung, Byeong Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.365-372
    • /
    • 2014
  • In this paper, We implement a power-saving and efficient measures in buildings using the smart-meter. In order to save electric power energy, We propose an improved automatic power-factor controller(APFC) and demand control measures. This is achieved by controlling directly circuit breakers and the capacitor bank feeders in real time via a two-way smart-meter's ICT skills. Improved APFC is minimizing installation costs by series-parallel connecting heterologous capacitors to form a more diverse capacitor banking and controlling using the smart-meter. In order to suppress the demand power, We have designed a smart-meter with communication functions using Atmel's AVR465 and tested an operated lodging building for 24-hours. As a result, We made sure to always retained more than 95% power factor and did not occur over compensation.