• Title/Summary/Keyword: 최대반복횟수

Search Result 77, Processing Time 0.019 seconds

Changes in the Physicochemical Properties and Sensory Characteristics of Burdock (Arctium lappa) During Repeated Steaming and Drying Procedures (증건 횟수에 따른 우엉의 이화학적 변화 및 관능적 특성 연구)

  • Lee, GeumYang;Son, YangJu;Jeon, YuHo;Kang, HeeJin;Hwang, InKyeoung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.336-344
    • /
    • 2015
  • This study was conducted to investigate changes in the physicochemical, antioxidant, and sensory properties of burdock during 9 repeated rounds of steaming ($90^{\circ}C$, 3 h) and drying ($60^{\circ}C$, 20 h) procedures. The moisture content decreased from 81.95% to 7.64% as the process was repeated. Fresh burdock showed the highest total sugar content, with 518.35 mg/g of soluble sugar, 86% being inulin. The reducing sugar content was the greatest (377.00 mg/g) in burdock that had been processed 3 times. The brown color continuously intensified, reaching its peak at 7 rounds of processing, and then weakened. Crude saponin content was the highest (6.17%) after the 5th processing. Polyphenol content and antioxidant activity (DPPH, ABTS, FRAP) were the highest at the 3rd and 5th procedures, respectively. Repeated processing weakened the grass and root odors and the bitter, astringent, and metallic tastes, whereas it strengthened the sweet and savory odors, caramel flavor, and richness.

A Study on Formulation Optimization for Improving Skin Absorption of Glabridin-Containing Nanoemulsion Using Response Surface Methodology (반응표면분석법을 활용한 Glabridin 함유 나노에멀젼의 피부흡수 향상을 위한 제형 최적화 연구)

  • Se-Yeon Kim;Won Hyung Kim;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.231-245
    • /
    • 2023
  • In the cosmetics industry, it is important to develop new materials for functional cosmetics such as whitening, wrinkles, anti-oxidation, and anti-aging, as well as technology to increase absorption when applied to the skin. Therefore, in this study, we tried to optimize the nanoemulsion formulation by utilizing response surface methodology (RSM), an experimental design method. A nanoemulsion was prepared by a high-pressure emulsification method using Glabridin as an active ingredient, and finally, the optimized skin absorption rate of the nanoemulsion was evaluated. Nanoemulsions were prepared by varying the surfactant content, cholesterol content, oil content, polyol content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization as RSM factors. Among them, surfactant content, oil content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization, which are factors that have the greatest influence on particle size, were used as independent variables, and particle size and skin absorption rate of nanoemulsion were used as response variables. A total of 29 experiments were conducted at random, including 5 repetitions of the center point, and the particle size and skin absorption of the prepared nanoemulsion were measured. Based on the results, the formulation with the minimum particle size and maximum skin absorption was optimized, and the surfactant content of 5.0 wt%, oil content of 2.0 wt%, high-pressure homogenization pressure of 1,000 bar, and the cycling number of high-pressure homogenization of 4 pass were derived as the optimal conditions. As the physical properties of the nanoemulsion prepared under optimal conditions, the particle size was 111.6 ± 0.2 nm, the PDI was 0.247 ± 0.014, and the zeta potential was -56.7 ± 1.2 mV. The skin absorption rate of the nanoemulsion was compared with emulsion as a control. As a result of the nanoemulsion and general emulsion skin absorption test, the cumulative absorption of the nanoemulsion was 79.53 ± 0.23%, and the cumulative absorption of the emulsion as a control was 66.54 ± 1.45% after 24 h, which was 13% higher than the emulsion.

Evaluation of Radioactivity Concentration According to Radioactivity Uptake on Image Acquisition of PET/CT 2D and 3D (PET/CT 2D와 3D 영상 획득에서 방사능 집적에 따른 방사능 농도의 평가)

  • Park, Sun-Myung;Hong, Gun-Chul;Lee, Hyuk;Kim, Ki;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.111-114
    • /
    • 2010
  • Purpose: There has been recent interest in the radioactivity uptake and image acquisition of radioactivity concentration. The degree of uptake is strongly affected by many factors containing $^{18}F$-FDG injection volume, tumor size and the density of blood glucose. Therefore, we investigated how radioactivity uptake in target influences 2D or 3D image analysis and elucidate radioactivity concentration that mediate this effect. This study will show the relationship between the radioactivity uptake and 2D,3D image acquisition on radioactivity concentration. Materials and Methods: We got image with 2D and 3D using 1994 NEMA PET phantom and GE Discovery(GE, U.S.A) STe 16 PET/CT setting the ratio of background and hot sphere's radioactivity concentration as being a standard of 1:2, 1:4, 1:8, 1:10, 1:20, and 1:30 respectively. And we set 10 minutes for CT attenuation correction and acquisition time. For the reconstruction method, we applied iteration method with twice of the iterative and twenty times subset to both 2D and 3D respectively. For analyzing the images, We set the same ROI at the center of hot sphere and the background radioactivity. We measured the radioactivity count of each part of hot sphere and background, and it was comparative analyzed. Results: The ratio of hot sphere's radioactivity density and the background radioactivity with setting ROI was 1:1.93, 1:3.86, 1:7.79, 1:8.04, 1:18.72, and 1:26.90 in 2D, and 1:1.95, 1:3.71, 1:7.10, 1:7.49, 1:15.10, and 1:23.24 in 3D. The differences of percentage were 3.50%, 3.47%, 8.12%, 8.02%, 10.58%, and 11.06% in 2D, the minimum differentiation was 3.47%, and the maximum one was 11.06%. In 3D, the difference of percentage was 3.66%, 4.80%, 8.38%, 23.92%, 23.86%, and 22.69%. Conclusion: The difference of accumulated concentrations is significantly increased following enhancement of radioactivity concentration. The change of radioactivity density in 2D image is affected by less than 3D. For those reasons, when patient is examined as follow up scan with changing the acquisition mode, scan should be conducted considering those things may affect to the quantitative analysis result and take into account these differences at reading.

  • PDF

An Efficient Video Management Technique using Forward Timeline on Multimedia Local Server (전방향 시간 경계선을 활용한 멀티미디어 지역 서버에서의 효율적인 동영상 관리 기법)

  • Lee, Jun-Pyo;Woo, Soon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.147-153
    • /
    • 2011
  • In this paper, we present a new video management technique using forward timeline to efficiently store and delete the videos on a local server. The proposed method is based on capturing the changing preference of the videos according to recentness, frequency, and playback length of the requested videos. For this purpose, we utilize the forward timeline which represents the time area within a number of predefined intervals. The local server periodically measures time popularity and request segment of all videos. Based on the measured data, time popularity and request segment, the local server calculates the mean time popularity and mean request segment of a video using forward timeline. Using mean time popularity and mean request segment of video, we estimate the ranking and allocated storage space of a video. The ranking represents the priority of deletion when the storage area of local server is running out of space and the allocated storage space means the maximum size of storage space to be allocated to a video. In addition, we propose an efficient storage space partitioning technique in order to stably store videos and present a time based free-up storage space technique using the expected variation of video data in order for avoiding the overflow on a local server in advance. The simulation results show that the proposed method performs better than other methods in terms of hit rate and number of deletion. Therefore, our video management technique for local server provides the lowest user start-up latency and the highest bandwidth saving significantly.

Weathering of Rock Specimens Exposed to Recurrent Freezing and Thawing Cycles (동결-융해 풍화에 의한 암석 물성 변화 양상과 추정에 관한 연구)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.276-283
    • /
    • 2012
  • Changes in rock properties due to freezing and thawing cycles ranging from $-20^{\circ}C$ to $10^{\circ}C$ were checked for the typical Korean rocks: granite (weathered), limestone, sandstone, tuff, shale and basalt. The porosity, seismic velocity, shore hardness and specific gravity were measured every 10 cycles for each type of rock up to 40 cycles. The specific gravity was rarely changed. Granite (w), shale and basalt decreased gradually in their shore hardness and seismic velocity values, these values for limestone, sandstone and tuff changed only a very little. The porosity increased in the granite (w), shale and basalt, whereas in the others it did not change. Due to the low tensile strength with high porosity, granite (w), shale and basalt were susceptible to the F-T cycles. A linear regression equation was calculated based on the experiment results according to properties and types of rock. The relationship between the freeze-thaw sensitivity (=initial porosity/initial tensile strength) and the coefficients of the regression equation was examined. With additional experimental data, the coefficients of the regression equation can be estimated using the F-T sensitivity. This makes it possible to predict the properties of rock as affected by freeze-thaw weathering by only measuring the initial properties without knowledge of the regression equation coefficients for each type of rock.

State of the Art Technology Trends and Case Analysis of Leading Research in Harmony Search Algorithm (하모니 탐색 알고리즘의 선도 연구에 관한 최첨단 기술 동향과 사례 분석)

  • Kim, Eun-Sung;Shin, Seung-Soo;Kim, Yong-Hyuk;Yoon, Yourim
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.81-90
    • /
    • 2021
  • There are various optimization problems in real world and research continues to solve them. An optimization problem is the problem of finding a combination of parameters that maximizes or minimizes the objective function. Harmony search is a population-based metaheuristic algorithm for solving optimization problems and it is designed to mimic the improvisation of jazz music. Harmony search has been actively applied to optimization problems in various fields such as civil engineering, computer science, energy, medical science, and water quality engineering. Harmony search has a simple working principle and it has the advantage of finding good solutions quickly in constrained optimization problems. Especially there are various application cases showing high accuracy with a low number of iterations by improving the solution through the empirical derivative. In this paper, we explain working principle of Harmony search and classify the leading research in recent 3 years, review them according to category, and suggest future research directions. The research is divided into review by field, algorithmic analysis and theory, and application to real world problems. Application to real world problems is classified according to the purpose of optimization and whether or not they are hybridized with other metaheuristic algorithms.

The Development of Prediction Equation for Estimating VO2max from the 20 m PSRT in Korean Middle-School Girls. Exercise Science (20 m 점증 왕복달리기 검사를 이용한 여중생의 VO2max 추정식 개발)

  • Park, Dong-Ho;Song, Jung-Ran;Lee, Sang-Hyun;Kim, Chang-Sun
    • Exercise Science
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The purpose of this study was to develop and validate regression models to estimate maximal oxygen uptake (VO2max) from the 20 m Progressive Shuttle Run Test (20 m PSRT) in Korean middle-school girls aged 13-15 years. The 20 m PSRT and VO2max were assessed in a sample of 194 participants. The sample was randomly split into validation (n=127) and test-retest reliability (n=99, 32 out of 127 participants also performed validity test) groups. 127 participants performed a graded exercise test (GXT, stationary gas analyser) and the 20 m PSRT (portable gas analyser) once to develop a VO2max prediction model and to analyze the validity of the modified 20 m PSRT protocol (starting at 7.5 km/h and increasing by 0.5 km/h every 1 min). 99 participants performed the 20 m PSRT twice for test-retest reliability purpose. Mean measured VO2max (39.2±5.1 ml/kg/min) from the potable gas analyzer was significantly increased from that measured during the GXT from stationary gas analyzer (37.7±5.7 ml/kg/min, p=.001) using the modified 20 m PSRT protocol. But it was a narrow range (1.5 ml/kg/min). The measured VO2max from the potable and stationary gas analyzers correlated at r=.88(p<.001). Test-retest of the 20 m PSRT yielded comparable results (Laps r=.88 & final speed r=.85). New regression equations were developed from present data to predict VO2max for middle-school girls: y=.231×Laps-.311×weight(in kg)+46.201 (r=.74, SEE=4.29 ml/kg/min). It is concluded that (a) the modified 20 m PSRT protocol is a valid and reliable test and (b) this equation developed in this study provides valid estimates of VO2max of Korean middle-school girl aged 13-15 years.