본 논문은 고해상도의 깊이맵을 얻기 위해서 대응되는 색상 영상의 최대 변화도를 이용한 깊이맵 업샘플링 기술을 제안한다. 기존 알고리즘들이 인접한 화소의 깊이 값을 참조할 때 거리에 따른 가중치를 부여하는 것과 달리, 제안한 방법은 현재 화소와 참조 화소 사이의 최대 색차 변화도를 이용하여 가중치를 부여한다. 이런 접근 방법은 비슷한 색상의 물체가 서로 붙어 있거나 큰 크기의 객체가 존재할 경우에도 모두 올바른 가중치를 부여할 수 있다는 장점을 갖는다. 먼저, 색상 영상의 색차 성분에 대한 변화도 영상을 계산하고, 업샘플링하고자 하는 화소와 참조 화소 사이의 최단 경로 위에서 가장 큰 변화도를 취한다. 변화도가 클수록 다른 객체에 존재할 확률이 높기 때문에 변화도가 큰 참조 화소에는 작은 가중치를 부여하고, 이들의 가중합을 통해 최종 깊이 값을 계산한다. 제안한 방법을 이용하여 깊이맵을 업샘플링한 결과가 기존 알고리즘들에 비해 우수한 결과를 보였다.
최근 홍수의 특성과 피해 양상은 과거와는 다르게 변화하고 있으며, 급격한 도시화로 인하여 기존 하천유역의 저류 능력이 감소하였으며 이러한 한계를 극복하기 위하여 이미 외국에서는 대심도 터널을 활용한 홍수재해 관리방안이 오래전부터 활용되어 왔다. 본 연구에서는 대심도 터널의 유입구, 수직갱, 감세지, 배수터널과 같은 시설물 중 대심도 터널 설계 시 수직 유입구를 통해 유입되는 유량의 에너지를 완화하고 효과적으로 배수 할 수 있도록 중요한 역할을 하는 감세지의 효율적인 깊이 산정을 위하여 수리모형실험을 실시하였으며, 모형은 Froude 상사법칙을 사용하여 원형의 1/18크기로 제작하였다. 본 연구에서 실시한 감세지 모형의 깊이는 0.278 m(원형 5.0 m), 0.417 m(원형 7.5 m)이며, 각 감세지 깊이별 수직 유입구 3개소(저지수직구1, 저지수직구2, 고지수직구) 및 5가지의 유량 CASE에 대하여 감세지 바닥면 압력을 비교?분석 하였다. 수직 유입구 3개소의 설계조건에 따른 감세지 깊이별 바닥면 압력 분포 평가를 실시한 결과 저지수직구1의 감세지 깊이 0.278 m(원형 5.0m)에서는 최대 압력이 4번 지점에서 $0.075kg/cm^2$(원형 1.30 MPa)이 측정 되었으며, 0.417 m(원형 7.5m)에서는 최대 압력이 1번지점에서 $0.089kg/cm^2$(원형 1.54MPa)이 측정되었다. 또한 저지수직구2의 감세지 깊이 0.278 m(원형 5.0 m)에서는 최대 압력이 1번 지점에서 $0.074kg/cm^2$(원형 1.28 MPa)이 측정 되었으며, 0.417 m(원형 7.5 m)에서는 최대 압력이 2번지점에서 $0.088kg/cm^2$(원형 1.52 MPa)이 측정되었다. 고지수직구의 감세지 깊이 0.278 m(원형 5.0 m)에서는 최대 압력이 3번 지점에서 $0.082kg/cm^2$(원형 1.42 MPa)이 측정 되었으며, 0.417 m(원형 7.5 m)에서는 최대 압력이 1번지점에서 $0.092kg/cm^2$(원형 1.59 MPa)이 측정되었다. 본 연구에서 실시한 수리모형실험의 결과 저유량에서 고유량으로 갈수록 최대압력지점은 반시계방향으로 움직이는 것을 알 수 있으며, 이는 수직 유입구의 설계조건에 따른 수직갱에서의 회전수차에 의하여 발생하는 것으로 분석하였다. 따라서 적절한 감세지 깊이 산정을 위해서 대심도터널의 수직 유입구(유입구형태, 수직갱)의 평가가 함께 유기적으로 이루어져야 할 것으로 판단된다.
본 연구에서는 화강풍화토 지반상 unpropped diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이와 지하수위 조건을 변화시키면서 원심모형실험을 수행하였다. 원심모형실험시 diaphragm wall은 두께 8mm인 알루미늄합금을 사용하였으며, 지반굴착을 재현하기 위하여 zinc chloride 기법을 이용하였다. 수치해석은 대부분의 지반공학문제에 적용할 수 있는 SAGE CRISP 프로그램을 이용하였다. 수치해석에서 모형지반은 수정 Cam-Clay 모델, diaphragm wall은 탄성모델, 지반과 diaphragm wall 사이의 경계면요소는 슬립모델을 사용하여 2차원 평면변형률 조건으로 해석을 수행하였다. 모형실험 결과 파괴면의 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었다. 실험 및 유한요소해석 결과 지반의 최대침하량과 최대침하량이 발생하는 위치는 잘 일치하였으며, 깊이에 따른 벽체변위는 선형적인 관계를 나타내었다. 또한, 최대 휨모멘트와 근입깊이로 정규화한 최대 휨모멘트 발생위치($h_{Mmax}$/d=0.4)는 잘 일치하였다.
본 연구는 시설하우스 재배에서 앞그루작물 재배 시 형성된 두둑을 재활용하여 뒷그루 작물을 무경운으로 재배할 경우 토양의 이화학성과 생육 및 수량에 미치는 영향을 구명하고자 추진한 연구 결과의 일부이다. 중동통(jd)의 두둑에서 토양 균열은 관찰되었으나 고랑에서는 관찰되지 않았다. 관행 경운 토양 두둑의 길이 방향으로 경운 5개월 후에 최대 폭 30 mm, 최대 깊이 15.3 cm, 길이 37~51 cm 정도 되는 균열이 3개 정도 발생되었다. 그리고 두둑의 폭 방향에서는 길이 7~28 cm 정도 되는 균열이 7.5개 정도 발생되었다. 무경운 1년차는 두둑의 길이 방향에서 최대 폭 18 mm, 최대 깊이는 30 cm, 길이는 140~200 cm 정도 되는 균열이 1개 정도 발생되었으며, 두둑 폭 방향의 균열은 최대 폭 22 mm, 최대 깊이는 18.5 cm에 길이는 6~22 cm 정도 되는 균열이 11개 정도 발생되었다. 한편 모래함량이 많은 중동통(jd)의 무경운 2년차 토양에서 균열은 관찰되지 않았으나, 점토함량이 많은 지산통(jd) 무경운 7년차 토양에서는 균열이 관찰되었다. 중동통(jd) 시설재배의 미사질양토의 관행 경운토양 표토 1 cm 깊이의 관입저항은 59 kPa에 비하여 무경운 1년차는 유의적으로 높았다. 경운 토양 20 cm 깊이의 관입저항은 161~185 kPa 수준이었고 36~39 cm 깊이의 관입저항 503~507 kPa을 정점으로 감소되었다. 무경운 1년차 토양 관입저항은 5~30 cm 깊이까지 167~172 kPa을 유지하였으나, 43 cm 깊이에서 437 kPa를 최대값으로 감소되었다. 무경운 2년차 표토의 관입저항은 1 cm 깊이의 81 kPa에서 6 cm 깊이는 243 kPa로 직선적인 증가를 하였다. 논에서 전환한 지산통(ji) 시설 재배지의 관행 경운 토양 관입저항은 표토 1 cm 깊이로부터 52 cm 깊이까지 토양이 깊어짐에 따라서 직선적인 증가를 하였으나, 그 이상의 깊이에서는 증가되지 않았다. 그러나 두둑을 재활용한 무경운 7년차 토양의 표토 1 cm와 2 cm 깊이의 관입저항은 직선적인 증가를 보여 경운 토양에 비하여 현저하게 증가되었으나, 그 이상의 깊이에서는 거의 변동이 없었다. 지산통(ji)과 중동통(jd)의 쟁기 바닥층은 표토에서 10~12 cm 깊이, 작토층은 21 cm 깊이까지로 추정되었다. 그러나 지산통(ji)의 경운 토양의 경반층은 33~35 cm 깊이로 추정되었으나 무경운 7년차는 경반층이 토양 38~44 cm 깊이에서 흔적으로만 존재하였다. 표토의 수분함량은 관행 경운 토양과 두둑을 재활용한 무경운 토양에서 경운 방법 간에 차이가 없었으나, 20 cm 깊이의 무경운 토양 수분함량은 14%로 경운 토양 25%에 비하여 현저하게 낮았다. 1 Bar와 15 Bar에서 측정한 표토의 보수력은 관행 경운토양 비하여 두둑을 재활용한 무경운 1년차와 무경운 2년차에서 증가되었다. 그리고 무경운 2년차 심토의 보수력은 1 Bar와 3 Bar에서 경운 토양과 무경운 1년차에 비하여 증가되는 경향이었다.
본 연구에서는 화강토 지반상의 자립식 diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이비, 지하수위 및 굴착조건(연속 및 단계굴착)을 변화시키면서 원심모형시럼을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zine chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 의해 발생되는 지반의 변형괴 벽체의 변위 및 휨모멘트를 시간경과에 따라 측정하였다. 실험결과, 벽체의 근입깊이비가 증가함에 따라 벽체의 휨모멘트는 증가하는 반면, 굴착과정동안 배면측에서의 간극수압 감소속도는 감소하였다. 최종 굴착단계에서 굴착후 시간경과에 따른 침하량은 굴착과정중의 침하?에 비해 5~7% 정도를 나타내었다. 최대표면침하량과 벽체변위를 굴착깊이로 정규화한 결과 최대 침하량은 벽체 변위량의 0.8~1.2배9평균0.91배)사이에 분포하였다. 굴착깊이로 전규화한 벽체변위와 근입깊이와의 관계는 지수함수식으로 제안하였다. 파괴면은 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 퐈괴면의 각도는 66~72.5$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다.
Trench sate CB-BRT:TC-BRT의 최대 제어 가능 전류(Maximum Controllable Current)에 영향을 미치는 설계 변수들을 조사하였다. 최대 제어 가능 전류를 결정하는 중요 설계 변수들로 트렌치 깊이, 핑거 게이트 길이, 메인 게이트 길이, 트렌치 밀도를 고려하였다. TC-BRT의 실험적 결과를 기존의 BRT와 CB-BRT의 결과와 비교하였다. 최대 제어 가능 전류는 트렌치 깊이와 트렌치 밀도가 증가하고 메인 게이트 길이가 감소할수록 증가하였으며 핑거 게이트 길이에 대해서는 큰 영향을 받지 않았다. 핑거 게이트가 있는 TC-BRT가 없는 것에 비해 최대 제어 가능 전류가 약 15% 높게 나타났다. 트렌치 밀도가 작을 때는 핑거 게이트에 의한 영향이 두드러지고 트렌치 밀도가 높아질수록 트렌치 게이트의 역할이 증가하였다.
기후변화 및 도시화로 인해 도시 내에서 증가하는 홍수로 인명 및 재산피해가 꾸준히 발생하고 있다. 특히 2022년 8월 8일 서울특별시 및 경기도 지역에 내린 폭우로 인해 8명 이상의 인명피해와 1300억원 이상의 재산피해가 발생하였다. 이러한 도시홍수를 근본적으로 방어하기 위하여 미국, 일본 등의 국가에서는 대심도 빗물저류배수터널을 활용하고 있다. 국내에서도 2011년 서울특별시 강서구 및 양천구에 발생하는 홍수를 방어하기 위하여 국내 최초 대심도 빗물저류배수터널인 '신월 빗물저류배수시설'을 건설하여 현재 운영 중에 있다. 대심도 빗물저류배수터널은 초기 개수로 흐름에서 만관 후 관수로 흐름으로 전이되는 구조물로 계획과 운영이 매우 어려운 시설이다. 이에 미국, 일본, 중국, 이탈리아 등 국가에서 대심도 빗물저류배수터널과 관련한 연구가 활발히 진행되고 있다. 본 연구에서는 대심도 빗물저류배수터널의 유입시설 중 감세부에 해당하는 수직갱과 감세지의 깊이에 따른 감세지 바닥 압력변화를 알아보기 위하여 수리실험을 수행하였다. 그 결과 감세지 깊이가 깊어질수록 바닥면의 압력이 증가하는 것으로 분석되었으며 바닥면의 압력이 감세지 깊이만큼의 정수압을 포함하는 경우 정수압 대비 최대 2.0배, 정수압을 포함하지 않는 경우 정수압 대비 최대 1.0배 인 것으로 분석되었다. 수직갱 깊이에 대한 실험 결과는 수직갱 깊이가 짧아질수록 압력이 감소하는 경향을 보이는 것으로 분석되었는데 이는 회전수 및 회전력과 관련 있는 것으로 판단된다. 향후 수직갱 직경, 수직갱 깊이에 대한 추가 연구가 필요한 것판단되며 이를 통하여 수직갱 깊이-감세지 깊이에 대한 정량적인 연구와 분석을 통해 경제적이고 안정적인 대심도 빗물저류배수터널 감세지 설계가이드라인을 제시하고자 한다.
쐐기 인자의 깊이 의존성 연구를 통하여 적절한 쐐기 인자 결정 깊이에 관한 연구를 하였다. 4 MV, 6MV, 10MV, 15MV (사용가속기 Varian, Siemens, Mitsubishi) 선종에 대하여 명목 쐐기 각도 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$, 쐐기를 사용하여, 깊이 변화에 따르는 쐐기 인자 변화를 살펴보았다. 적정 쐐기 인자 결정 깊이를 알아보기 위하여 서울중앙병원, 부산침례병원, 원주기독병원에서 1990. 1991. 12 사이에 쐐기를 이용하여 방사선 치료를 받은 환자중 무작위로 614명을 추출하여 사용 에너지별, 쐐기 각도별, 치료 깊이별 분석을 시도하였다. 전체 환자의 60% 이상이 8cm$\pm$2.5cm 깊이에서 치료를 받았다. 쐐기 인자를 선량 최대 깊이로 결정할 경우 모든 환자가 평균 2%(최대 4%)의 치료 오차를 갖게 된다. 그러나 8cm깊이를 쐐기 인자 결정 깊이로 할 경우 평균 0.5% 선량 오차 이내로(사용가속기 기종, 에너지, 쐐기 각도에 관계 없이 최대 오차 1.7% 이내) 정확한 치료를 받을 수 있음을 알았다. 따라서 쐐기 인자는 5-10cm(8cm) 깊이에서 결정되는 것이 합리적인 것을 알았다.
3차원 영상을 제작하기 위해서는 여러 시점의 색상 영상과 함께 깊이 정보를 필요로 한다. 하지만 깊이 정보를 얻을 때 사용하는 ToF 카메라는 해상도가 낮으며 적외선 신호의 주파수 문제 때문에 최대 3대까지 사용할 수 있다. 따라서 깊이 정보를 색상 영상과 함께 사용하기 위해서 깊이 정보의 업샘플링이 필수적이다. 업샘플링은 깊이 정보를 색상 카메라 위치로 3차원 워핑하고 결합형 양방향 필터(joint bilateral filter, JBF)를 사용하여 빈 영역을 채우는 방법으로 진행된다. 업샘플링은 오랜 시간이 소요되지만 그래픽스 프로세싱 유닛(graphics processing units, GPU)를 이용하여 빠르게 수행될 수 있다. 본 논문에서는 다중 GPU의 병렬 수행을 통하여 빠르게 다시점 깊이맵을 생성할 수 있는 방법을 제안한다. 다중 GPU 병렬 수행은 범용 목적 GPU(general purpose computing on GPU, GPGPU) 중의 하나인 CUDA를 이용하였으며, 본 논문에서 제안된 방법을 이용하여 3개의 GPU 사용한 실험 결과 초당 35 프레임의 다시점 깊이맵을 생성했다.
SiC는 Si에 비해서 Breakdown field가 10배 높고, Energy gap이 3배 높기 때문에 높은 Breakdown voltage를 갖는 우수한 전력 MOSFET을 제작할 수 있다. 하지만 낮은 Mobility로 인한 높은 On저항을 갖기 때문에 이를 낮추기 위해서 Trench MOSFET이 제안되었지만 동시에 BV가 감소한다는 문제점을 갖는다. 본 논문에서는 1200V급 Trench MOSFET 설계를 목적으로 하며, 이를 해결하기 위해서 BV와 Ron에 대한 중요한 변수인 Epi 깊이, Trench 깊이, Trench 깊이에서 Epi 깊이까지의 거리에 대한 Split을 진행하여 최대 전계, BV, Ron의 신뢰성 특성을 비교 분석하였다. Epi 깊이가 증가할수록, Trench 깊이가 감소할수록, Trench 깊이에서 Epi 깊이가 감소할수록 최대 전계 감소, BV 증가, Ron 증가를 확인하였다. 모든 결과는 Sentaurus TCAD를 통해 Simulation 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.