• Title/Summary/Keyword: 최대값과 최소값분포

Search Result 175, Processing Time 0.025 seconds

A study on development of CRM chrysotile in soil (토양 중 백석면 표준물질 개발에 관한 연구)

  • Choi, Yun-Ho;Kwon, Ye-Bin;Lee, Jin-Wook;Kim, Nam-Jun;Jeong, Min-Jong;Hwang, Beom-Goo;Lee, Jae-Hyung;Sun, Yle-Shik;Kim, Bak-Gil
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • Interested in NOA (Naturally Occurring Asbestos), Korea as well as the USA has been making geologic maps of asbestos distributed mines and surrounding areas, restoring mines, evaluating hazard, and so on. The result can be used to improve the reliability of analysts and analysis institutions by judging the amount of asbestos and set up PLM(Polarizing Light Microscope) information by analyzing in soil. The certification value of 2 kinds of CRM(Certified Reference Material) was performed by counting total 400 points with EPA 600-R-93-116 method using by PLM. The following is the result of homogeneity and stability of 2 kinds of manufactured CRM analyzed by ANOVA (Analysis of variance) and Regression Analysis. Based on the analyzation, the results are satisfied with homogeneity and long-term stability. The analyzed certification value of CRM includes the range of minimum and maximum value of point counting result for chrysotile; low concentration-1% (range, 0.25~3.00), high concentration-4% (range, 2.25~5.50).

A Study on Improvement of the DDHV Estimating Method (설계시간교통량 산정방법 개선)

  • 문미경;장명순;강재수
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.61-71
    • /
    • 2003
  • Existent DDHV draws and is calculating K coefficient. D coefficient from sum of traffic volume two-directions time. There is difference of design order and actuality order, error of DDHV estimation value, problem of irregular change etc. of DDHV thereby. In this study, among traffic volume of each other independent two direction(going up, going down), decide design target order in the directional traffic volume, presented way(way) applying without separating K coefficient and D coefficient at the same time. The result were analysis about national highway permanent count point 360 points 30 orders by existing DDHV estimation value method(separation plan) analysis wave and following variation appear. - design order and actuality order are collision at 357 agencies(99.2%) - actuality order special quality : Measuring efficiency of average 80 orders, maximum 1,027 order, minimum 2 orders - error distribution of design order and actuality order : inside 10 hours is(30$\pm$10hour) 106 points(29.4%), 254 points(70.6%) more than 30 orders and $\pm$10 orders error occurrence be - DDHV estimation value : Average 8.4%, maximum 46.7% The other side, average 50 orders. error improvement effect of DDHV 8.4% was analysed that is at design hourly volume computation by inseparability method in case of AADT premises correct thing because inseparability plan agrees actuality order at whole agency with design order and measuring efficiency of DDHV estimation value is "0".t;0".uot;.

Application of Dimensional Expansion and Reduction to Earthquake Catalog for Machine Learning Analysis (기계학습 분석을 위한 차원 확장과 차원 축소가 적용된 지진 카탈로그)

  • Jang, Jinsu;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.377-388
    • /
    • 2022
  • Recently, several studies have utilized machine learning to efficiently and accurately analyze seismic data that are exponentially increasing. In this study, we expand earthquake information such as occurrence time, hypocentral location, and magnitude to produce a dataset for applying to machine learning, reducing the dimension of the expended data into dominant features through principal component analysis. The dimensional extended data comprises statistics of the earthquake information from the Global Centroid Moment Tensor catalog containing 36,699 seismic events. We perform data preprocessing using standard and max-min scaling and extract dominant features with principal components analysis from the scaled dataset. The scaling methods significantly reduced the deviation of feature values caused by different units. Among them, the standard scaling method transforms the median of each feature with a smaller deviation than other scaling methods. The six principal components extracted from the non-scaled dataset explain 99% of the original data. The sixteen principal components from the datasets, which are applied with standardization or max-min scaling, reconstruct 98% of the original datasets. These results indicate that more principal components are needed to preserve original data information with even distributed feature values. We propose a data processing method for efficient and accurate machine learning model to analyze the relationship between seismic data and seismic behavior.

Acquisition and Analysis of Environmental Data for Smart Farm (스마트팜 생육환경 데이터 획득 및 분석)

  • Seok-Ho Han;Hoon-Seok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.3
    • /
    • pp.130-137
    • /
    • 2023
  • Smart farms, which have been receiving attention as a solution to recent rural problems, refer to technologies that optimize the growing environment of crops and increase the productivity and quality of crops through efficient management. If the relationships between environmental data in smart farms are analyzed, additional productivity enhancement and crop management will be possible. In this paper, we propose a method for acquiring and analyzing nine environmental data, including temperature, humidity, CO2, soil temperature, soil moisture, insolation, soil EC, EC, and pH. Data acquisition is done through RS-485 communication between the main board and the sensor board and stored in the database after acquisition. The stored data is downloaded in Excel sheet format and analyzed through histograms, data charts, and correlation heatmaps. First, we analyze the distribution of total, day, and night data through histogram analysis, and identifiy the average, median, minimum, and maximum values by month through data chart analysis separating day and night to see how the data changes by month. Finally, we analyze the correlation of the data through a correlation heatmap analysis separating day and night. The results show a very strong positive correlation between temperature and soil temperature and soil EC and EC during the day, and a very strong positive correlation between temperature and soil temperature and soil EC and EC at night, and a strong negative correlation between temperature and soil EC.

Temporal and Spatial Variability of Heating and Cooling Degree-days in South Korea, 1973-2002 (한반도 난${\cdot}$냉방도일의 시공간 분포 특성 변화에 관한 연구)

  • Choi, Youn-Geun
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.5 s.110
    • /
    • pp.584-593
    • /
    • 2005
  • The spatial and temporal variations of heating degree-days (HDDs) and cooling degree-days (CDDs) are closely related with the temperature field. The spatial distribution of 30-year mean HDDs shows that the higher values locates in the northern part of South Korea while the lower values locates in the southern part. The 30-year mean CDDs shows a more randomized distribution than the HDDs. The changing trends of HDDs and CDDs show a different feature: HDDs have a distinct decreasing trend while CDDs have an insignificant change. The decreasing trends of HDDs are consistent over South Korea and most of stations have experienced the statistically significant change. As significant changing areas of HDDs are much broader than those of annual mean temperature, HDDs can be more useful than annual mean temperature to detect the climate change impact on a regional level. In other words, an insignificant change on the mean temperature field can induce the significant change of thermal climatology in a region. The temporal pattern of climatic departure index (CDI) for South Korea HDDs series shows a general decreasing, but a sharp increase during recent years. The drastic decrease of HDDs induces higher CDI indicating larger variability among stations. However, the decrease of South Korea HDDs series cannot totally attribute to the global warming due to urban effects. By the early 1980s, there were no big differences of HDDs between urban and rural series, but later the differences are getting larger. This was expected to be with the intensification of urbanization in South Korea. However, still there is a decreasing trend of HDDs for rural stations.

Benthic Marine Algal Flora and Community Structure of Yongho-dong Area in Pusan, Korea (부산 용호동 일대의 저서 해조상 및 군집구조)

  • NAM Ki Wan;KIM Young Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.374-384
    • /
    • 1999
  • Benthic marine algal flora and community structure of Yongho-dong area in Pusan, Korea were investigated seasonally in intertidal and subtidal zones by a quadrat method along 5 transect lines from July 1996 to April 1997. In this area, a total of 99 species including 3 blue-green, 13 green, 26 brown and 57 red algae was found. Among them, 33 taxa, together with dominant Ulva pertusa and Corallina pilulifera, occurred throughout the year. Enteromorpha spp. and Ulva spp. vertically distributed in upper and middle zone, while Simphyocladia latiuscula, Chondria crassicaulis, Corallina pilulifera and Sargassum sup. in lower zones. Biomass per unit area exhibited a wide range of variation, from 1,241 g/$m^2$(spring) to 1,648 g/$m^2$(summer) in fresh weight. Maximum and minimum species diversity were recorded in spring and autumn, respectively. Results of the UPGAM cluster analysis suggest that the examined 5 sites can be divided into two groups, sites exposed to open sea (transects 1, 2, 3) and comparatively sheltered sites (transects 4, 5) faced with the Pusan Harbor. The former group is represented by large brown algae, Sargassum and Hizikia, while Ulva pertusa and Lomentaria species are mainly found in the latter group. A calcareous alga, Corallina pilulifera occurred dominantly in both groups throughout the year. In conclusion, number of species in this area was remarkably reduced as compared to the previous data. This result may suggest probably more change of algal vegetation in future, considering the physical and chemical pollutions loaded in the coastal marine environment of this area.

  • PDF

Sensitivity Analysis of the SWMM Model Parameters Based on Design Rainfall Condition (설계강우조건에 따른 SWMM모형 매개변수의 민감도 분석)

  • Lee, Jong-Tae;Hur, Sung-Chul;Kim, Tae-Hwa
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.213-222
    • /
    • 2005
  • This study is a sensitivity analysis of the parameters which affect the simulation results under various design rainfall conditions, using the SWMM model, for three selected basins in urban areas. The sensitivity of the peak flow rate is defined by $S_Q$ (=1.0 - (min. ratio of peak flow rate/max. ratio of peak flow rate)), and the rainfall conditions are classified in terms of design rainfall frequency, duration, and distribution. The simulation results show that in most conditions the parameters - the impermeable area ratio, the sewer slope, and the initial infiltration capacity - have more significant effects on the results than other parameters. As the design rainfall frequency increases, the sensitivity of the sewer slope and sewer roughness increases, while the parameters related with the surface runoff decrease. When the rainfall duration increases, the sensitivities of most parameters of surface runoff and sewer flow decrease. Also, at the 1st quarterly Huff rainfall distribution condition, the impermeable area ratio has high sensitivity, but at the 4th quarterly condition the parameters related with sewer flow show higher sensitivities. These tendencies can be explained by considering the procedure for computing the effective rainfall and kinematic wave on the surface and sewer flow.

The Characteristics of Probable Maximum Flood on Wi Stream Watersheds (위천유역(渭川流域)의 가능최대홍수량(可能最大洪水量) 특성(特性))

  • Choi, Kyung-Sook;Suh, Seung-Duk
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.37-44
    • /
    • 1998
  • The estimation of PMP (Probable Maximum Precipitation) and the analysis of characteristics of PMF (Probable Maximum Flood) according to the types of time distribution of rainfall and variations of base flow for the determination of design flood of major hydraulic structures in the watershed area of Wi stream were analysed. The PMP was estimated by the hydro-meteorological method suggested by the guideline of the World Meteorological Organization(WMO). The Blocking method was cited to transpose from PMP to PMS (Probable Maximum Storm) with time distribution. The unit hydrograph, applied for the estimation of PMF was derived by Clark's method. The summaryzed results : (1) The 72 hrs duration PMP in the area is 477.3mm which is 80mm less than the PMP map in Korea and 134 mm lager than the maximum precipitation of 342.9mm in Taegu, near the Wi stream watershed. (2) According to the types of time distribution and variations of base flow, the ranges of PMF for advanced type, central type and delayed type are 3,145.3~3,348.3cms, 3,774.6~3,977.7cms and 3,814.6~4,017.3cms, respectively. Those mean that peak discharge of advanced type is 600cms less than the central type and delayed type. (3) Delayed type among three types by Blocking method has been estimated the largest PMF of 4,017.3cms, and the advanced type has been estimated the smallest PMF of 3,145.3cms. The mean value of the peak PMF of 3,653.6cms may probably be resonable PMF in the Wi stream watershed. The mean PMF could probably be 1.7 times lager than the result of Gajiyama's equation. It is equivalent to the flood of return period 1,000 to 10,000 yrs.

  • PDF

A Pilot Study for the Remote Monitoring of IMRT Using a Head and Neck Phantom (원격 품질 보증 시스템을 사용한 세기변조 방사선치료의 예비 모니터링 결과)

  • Han, Young-Yih;Shin, Eun-Hyuk;Lim, Chun-Il;Kang, Se-Kwon;Park, Sung-Ho;Lah, Jeong-Eun;Suh, Tae-Suk;Yoon, Myong-Geun;Lee, Se-Byeong;Ju, Sang-Gyu;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.249-260
    • /
    • 2007
  • Purpose: In order to enhance the quality of IMRT as employed in Korea, we developed a remote monitoring system. The feasibility of the system was evaluated by conducting a pilot study. Materials and Methods: The remote monitoring system consisted of a head and neck phantom and a user manual. The phantom contains a target and three OARs (organs at risk) that can be detected on CT images. TLD capsules were inserted at the center of the target and at the OARs. Two film slits for GafchromicEBT film were located on the axial and saggital planes. The user manual contained an IMRT planning guide and instructions for IMRT planning and the delivery process. After the manual and phantom were sent to four institutions, IMRT was planed and delivered. Predicted doses were compared with measured doses. Dose distribution along the two straight lines that intersected at the center of the axial film was measured and compared with the profiles predicted by the plan. Results: The measurements at the target agreed with the predicted dose within a 3% deviation. Doses at the OARs that represented the thyroid glands showed larger deviations (minimum 3.3% and maximum 19.8%). The deviation at OARs that represented the spiral cord was $0.7{\sim}1.4%$. The percentage of dose distributions that showed more than a 5% of deviation on the lines was $7{\sim}27%$ and $7{\sim}14%$ along the horizontal and vertical lines, respectively. Conculsion: Remote monitoring of IMRT using the developed system was feasible. With remote monitoring, the deviation at the target is expected to be small while the deviation at the OARs can be very large. Therefore, a method that is able to investigate the cause of a large deviation needs to be developed. In addition, a more clinically relevant measure for the two-dimensional dose comparison and pass/fail criteria need to be further developed.

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area (서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성)

  • Son, Juwon;Shin, Hong-Ryeol;Mo, Ahra;Son, Seung-Kyu;Moon, Jai-Woon;Kim, Kyeong-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.143-156
    • /
    • 2015
  • In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.