• Title/Summary/Keyword: 최단 경로 문제

Search Result 145, Processing Time 0.024 seconds

Fast and Scalable Path Re-routing Algorithm Using A Genetic Algorithm (유전자 알고리즘을 이용한 확장성 있고 빠른 경로 재탐색 알고리즘)

  • Lee, Jung-Kyu;Kim, Seon-Ho;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.157-164
    • /
    • 2011
  • This paper presents a fast and scalable re-routing algorithm that adapts to dynamically changing networks. The proposed algorithm integrates Dijkstra's shortest path algorithm with the genetic algorithm. Dijkstra's algorithm is used to define the predecessor array that facilitates the initialization process of the genetic algorithm. After that, the genetic algorithm re-searches the optimal path through appropriate genetic operators under dynamic traffic situations. Experimental results demonstrate that the proposed algorithm produces routes with less traveling time and computational overhead than pure genetic algorithm-based approaches as well as the standard Dijkstra's algorithm for large-scale networks.

Efficient Internet Traffic Engineering based on Shortest Path Routing (최단경로 라우팅을 이용한 효율적인 인터넷 트래픽 엔지니어링)

  • 이영석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.183-191
    • /
    • 2004
  • Single shortest path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal cost multiple shortest paths in OSPF and IS-IS does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, among all the equal cost multiple shortest paths in the network, a set of TE-aware shortest paths, which reduces the maximum link load significantly, can be found and used by IP routers without any change of existing routing protocols and serious configuration overhead. While calculating TE-aware shortest paths. the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next-hop toward the destination by looking up the destination prefix. In this paper, we present a problem formulation of finding a set of TE-aware shortest paths in ILP, and propose a simple heuristic for the problem. From the simulation results, it is shown that TE-aware shortest path routing performs better than default shortest path routing and ECMP in terms of the maximum link load with the marginal configuration overhead of changing the next-hops.

Design of Operator for Searching Trip Time Dependent Shortest Path in a Road Network (도로 네트워크 환경에서 운행 시간을 고려한 최단 경로 탐색 연산자 설계)

  • Lee, Dong-Gyu;Lee, Yang-Koo;Jung, Young-Jin;Ryu, Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.51-54
    • /
    • 2005
  • 최근 도로 네트워크 환경에서 날로 증가하는 교통 수요를 충족시키고 각종 교통 문제를 해결하기 위해서 지능형교통시스템(ITS, Intelligent Transportation System)을 적용하고 있다. 특히, 첨단교통정보 시스템(ATIS, Advanced Traveler Information System)은 개별 차량의 주행을 최적화시키는 시스템으로서 운전자에게 출발지에서 목적지까지 빠르고 쾌적한 주행경로를 제공하는 차량 경로계획 수립을 제공한다. 하지만 이러한 시스템은 도로 구간의 비용으로 정적인 값을 이용하므로 동적으로 변화하는 구간 비용을 가지고 도로 네트워크에서 최단 경로를 제공하기는 어렵다. 따라서, 이 논문에서는 교통 혼잡을 고려한 최단 경로 탐색 연산자를 제안한다. 제안된 연산자는 현재 시간 비용과 과거의 시간 비용 변화 량을 더하여 출발지에서 목적지까지 경로를 탐색하는데 이용한다. 이러한 방법은 시간에 따라 변화하는 도로의 상황을 반영하며 출발지에서 목적지까지의 최단 경로뿐만 아니라 예상 도착 시간을 추정할 수 있다. 또한 제안된 연산자는 효율적인 도로 이용, 물류비용 감소, 응급 상황 대체, 연료 절약 및 환경 오염 감소 등의 장점을 가지며 첨단교통정보시스템에서 응용 될 수 있다.

  • PDF

Massive Graph Expression and Shortest Path Search in Interpersonal Relationship Network (인물관계망의 대용량 그래프 표현과 최단 경로 탐색)

  • Min, Kyoung-Ju;Jin, Byeong-Chan;Jung, Man-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.624-632
    • /
    • 2022
  • Relationship networks such as an interpersonal relationship network or navigation route search can be expressed in graph form. However, as the amount of data increase, there is a problem that it is difficult to search for the desired data when it is displayed on one screen. In this paper, we propose a visualization method for searching for people, searching for the shortest path between people, and using graphs to express an interpersonal relationship network with many nodes. Unlike the search for the shortest path in the routing table, the shortest path in the interpersonal relationship network should be changeable according to the intension or importance of the researcher or user who is analyzing it. To this end, the BFS algorithm was modified to apply the characteristics of the interpersonal relationship network. For the verification of the results, the data in the character relationship information of the Korean Classics DB in the Korean Classics Translation Institute was used.

A Geometric Proof on Shortest Paths of Bounded Curvature (제한된 곡률을 갖는 최단경로에 대한 기하학적 증명)

  • Ahn, Hee-Kap;Bae, Sang-Won;Cheong, Otfried
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2007
  • A point-wise car-like robot moving in the plane changes its direction with a constraint on turning curvature. In this paper, we consider the problem of computing a shortest path of bounded curvature between a prescribed initial configuration (position and orientation) and a polygonal goal, and propose a new geometric proof showing that the shortest path is either of type CC or CS (or their substring), where C specifies a non-degenerate circular arc and S specifies a non-degenerate straight line segment. Based on the geometric property of the shortest path, the shortest path from a configuration to a polygonal goal can be computed in linear time.

Design of Near-Minimum Time Path Planning Algorithm for Autonomous Driving (무인 자율 주행을 위한 최단 시간 경로계획 알고리즘 설계)

  • Kim, Dongwook;Kim, Hakgu;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.609-617
    • /
    • 2013
  • This paper presents a near-minimum time path planning algorithm for autonomous driving. The problem of near-minimum time path planning is an optimization problem in which it is necessary to take into account not only the geometry of the circuit but also the dynamics of the vehicle. The path planning algorithm consists of a candidate path generation and a velocity optimization algorithm. The candidate path generation algorithm calculates the compromises between the shortest path and the path that allows the highest speeds to be achieved. The velocity optimization algorithm calculates the lap time of each candidate considering the vehicle driving performance and tire friction limit. By using the calculated path and velocity of each candidate, we calculate the lap times and search for a near-minimum time path. The proposed algorithm was evaluated via computer simulation using CarSim and Matlab/Simulink.

A Shortest Path Routing Algorithm using a Modified Hopfield Neural Network (수정된 홉필드 신경망을 이용한 최단 경로 라우팅 알고리즘)

  • Ahn, Chang-Wook;Ramakrishna, R.S.;Choi, In-Chan;Kang, Chung-Gu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2002
  • This paper presents a neural network-based near-optimal routing algorithm. It employs a modified Hopfield Neural Network (MHNN) as a means to solve the shortest path problem. It uses every piece of information that is available at the peripheral neurons in addition to the highly correlated information that is available at the local neuron. Consequently, every neuron converges speedily and optimally to a stable state. The convergence is faster than what is usually found in algorithms that employ conventional Hopfield neural networks. Computer simulations support the indicated claims. The results are relatively independent of network topology for almost all source-destination pairs, which nay be useful for implementing the routing algorithms appropriate to multi -hop packet radio networks with time-varying network topology.

Optimal Solution Algorithm for Delivery Problem on Graphs

  • Lee, Kwang-Eui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.111-117
    • /
    • 2021
  • The delivery problem on a graph is that of minimizing the object delivery time from one vertex to another vertex on a graph with m vertices using n various speed robot agents. In this paper, we propose two optimal solution algorithms for the delivery problem on a graph with time complexity of O(㎥n) and O(㎥). After preprocessing to obtain the shortest path for all pairs of the graph, our algorithm processed by obtaining the shortest delivery path in the order of the vertices with the least delivery time. Assuming that the graph reflects the terrain on which to solve the problem, our O(㎥) algorithm actually has a time complexity of O(㎡n) as only one preprocessing is required for the various deployment of n robot agents.

Finding a Second Best Coverage Path (차선거리유지 경로찾기)

  • Na, Hyeon-Suk;Kim, Jung-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.385-393
    • /
    • 2008
  • The best coverage problem is finding a path whose worst distance to the sensor-set is the best among all paths. Instead, if the user stays close to its nearest two sensors, then the stability of the wireless connection may be guaranteed. So we consider the problem of finding a second best coverage path; given the sensor set U, a starting point s and a target point t, find a path whose worst distance to the second closest sensor is minimized. This paper presents an O(n logn) -time algorithm to find such a path. We also give experimental evidence showing that the connection to the sensor-set along a second best coverage path is more stable than that along the best coverage path.

Safe Route-Recommendation App. for Safe Women Leisure Activities based on the Space Syntax (Space Syntax기반 여성의 안전한 여가활동 경로 추천앱)

  • Lim, Won-Jun;Park, Su-A;Park, Min-Joo;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.75-76
    • /
    • 2013
  • 본본 논문에서는 Space Syntax 이론에 기반하여 여성의 안전한 여가활동 경로를 추천하는 어플리케이션을 제안한다. 이 어플리케이션은 접근성, 지역 간 상호관계 등을 바탕으로 한 계산을 통해 추천경로를 만든다. 이는 일반적인 네비게이션이 가지는 최단시간, 최단거리 탐색과는 차별성을 가지며, 안전을 최우선으로 한 경로를 탐색한다. 오늘날 늘어난 여가시간에 따라 사람들의 레저 활동이 많아지며, 따라서 여성의 경우도 참여율에 높아진다. 이 때 여성의 경우 안전적 문제에 있어 레저 활동 장소까지의 경로를 추천하고자 한다. 본 논문에서는 제안하는 레저활동과 여성안전에 관련한 어플리케이션은 다양한 위험요소를 염두에 두어 계산을 통해 안전한 경로를 제공하는 알고리듬으로 주관적 선택사항을 적용하여, 자기맞춤형 경로를 선택 가능하게 한다.

  • PDF