• Title/Summary/Keyword: 최근접 이웃 탐색

Search Result 19, Processing Time 0.029 seconds

Analysis of GPU-based Parallel Shifted Sort Algorithm by comparing with General GPU-based Tree Traversal (일반적인 GPU 트리 탐색과의 비교실험을 통한 GPU 기반 병렬 Shifted Sort 알고리즘 분석)

  • Kim, Heesu;Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1151-1156
    • /
    • 2017
  • It is common to achieve lower performance in traversing tree data structures in GPU than one expects. In this paper, we analyze the reason of lower-than-expected performance in GPU tree traversal and present that the warp divergences is caused by the branch instructions ("if${\ldots}$ else") which appear commonly in tree traversal CUDA codes. Also, we compare the parallel shifted sort algorithm which can reduce the number of warp divergences with a kd-tree CUDA implementation to show that the shifted sort algorithm can work faster than the kd-tree CUDA implementation thanks to less warp divergences. As the analysis result, the shifted sort algorithm worked about 16-fold faster than the kd-tree CUDA implementation for $2^{23}$ query points and $2^{23}$ data points in $R^3$ space. The performance gaps tend to increase in proportion to the number of query points and data points.

An Improved Skyline Query Scheme for Recommending Real-Time User Preference Data Based on Big Data Preprocessing (빅데이터 전처리 기반의 실시간 사용자 선호 데이터 추천을 위한 개선된 스카이라인 질의 기법)

  • Kim, JiHyun;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2022
  • Skyline query is a scheme for exploring objects that are suitable for user preferences based on multiple attributes of objects. Existing skyline queries return search results as batch processing, but the need for real-time search results has increased with the advent of interactive apps or mobile environments. Online algorithm for Skyline improves the return speed of objects to explore preferred objects in real time. However, the object navigation process requires unnecessary navigation time due to repeated comparative operations. This paper proposes a Pre-processing Online Algorithm for Skyline Query (POA) to eliminate unnecessary search time in Online Algorithm exploration techniques and provide the results of skyline queries in real time. Proposed techniques use the concept of range-limiting to existing Online Algorithm to perform pretreatment and then eliminate repetitive rediscovering regions first. POAs showed improvement in standard distributions, bias distributions, positive correlations, and negative correlations of discrete data sets compared to Online Algorithm. The POAs used in this paper improve navigation performance by minimizing comparison targets for Online Algorithm, which will be a new criterion for rapid service to users in the face of increasing use of mobile devices.

Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier (Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템)

  • Ohn, Syng-Yup;Chi, Seung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.

Exploring the Performance of Synthetic Minority Over-sampling Technique (SMOTE) to Predict Good Borrowers in P2P Lending (P2P 대부 우수 대출자 예측을 위한 합성 소수집단 오버샘플링 기법 성과에 관한 탐색적 연구)

  • Costello, Francis Joseph;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.71-78
    • /
    • 2019
  • This study aims to identify good borrowers within the context of P2P lending. P2P lending is a growing platform that allows individuals to lend and borrow money from each other. Inherent in any loans is credit risk of borrowers and needs to be considered before any lending. Specifically in the context of P2P lending, traditional models fall short and thus this study aimed to rectify this as well as explore the problem of class imbalances seen within credit risk data sets. This study implemented an over-sampling technique known as Synthetic Minority Over-sampling Technique (SMOTE). To test our approach, we implemented five benchmarking classifiers such as support vector machines, logistic regression, k-nearest neighbor, random forest, and deep neural network. The data sample used was retrieved from the publicly available LendingClub dataset. The proposed SMOTE revealed significantly improved results in comparison with the benchmarking classifiers. These results should help actors engaged within P2P lending to make better informed decisions when selecting potential borrowers eliminating the higher risks present in P2P lending.

A Learning Agent for Automatic Bookmark Classification (북 마크 자동 분류를 위한 학습 에이전트)

  • Kim, In-Cheol;Cho, Soo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.455-462
    • /
    • 2001
  • The World Wide Web has become one of the major services provided through Internet. When searching the vast web space, users use bookmarking facilities to record the sites of interests encountered during the course of navigation. One of the typical problems arising from bookmarking is that the list of bookmarks lose coherent organization when the the becomes too lengthy, thus ceasing to function as a practical finding aid. In order to maintain the bookmark file in an efficient, organized manner, the user has to classify all the bookmarks newly added to the file, and update the folders. This paper introduces our learning agent called BClassifier that automatically classifies bookmarks by analyzing the contents of the corresponding web documents. The chief source for the training examples are the bookmarks already classified into several bookmark folders according to their subject by the user. Additionally, the web pages found under top categories of Yahoo site are collected and included in the training examples for diversifying the subject categories to be represented, and the training examples for these categories as well. Our agent employs naive Bayesian learning method that is a well-tested, probability-based categorizing technique. In this paper, the outcome of some experimentation is also outlined and evaluated. A comparison of naive Bayesian learning method alongside other learning methods such as k-Nearest Neighbor and TFIDF is also presented.

  • PDF

A Concordance Study of the Preprocessing Orders in Microarray Data (마이크로어레이 자료의 사전 처리 순서에 따른 검색의 일치도 분석)

  • Kim, Sang-Cheol;Lee, Jae-Hwi;Kim, Byung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.585-594
    • /
    • 2009
  • Researchers of microarray experiment transpose processed images of raw data to possible data of statistical analysis: it is preprocessing. Preprocessing of microarray has image filtering, imputation and normalization. There have been studied about several different methods of normalization and imputation, but there was not further study on the order of the procedures. We have no further study about which things put first on our procedure between normalization and imputation. This study is about the identification of differentially expressed genes(DEG) on the order of the preprocessing steps using two-dye cDNA microarray in colon cancer and gastric cancer. That is, we check for compare which combination of imputation and normalization steps can detect the DEG. We used imputation methods(K-nearly neighbor, Baysian principle comparison analysis) and normalization methods(global, within-print tip group, variance stabilization). Therefore, preprocessing steps have 12 methods. We identified concordance measure of DEG using the datasets to which the 12 different preprocessing orders were applied. When we applied preprocessing using variance stabilization of normalization method, there was a little variance in a sensitive way for detecting DEG.

Leision Detection in Chest X-ray Images based on Coreset of Patch Feature (패치 특징 코어세트 기반의 흉부 X-Ray 영상에서의 병변 유무 감지)

  • Kim, Hyun-bin;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.35-45
    • /
    • 2022
  • Even in recent years, treatment of first-aid patients is still often delayed due to a shortage of medical resources in marginalized areas. Research on automating the analysis of medical data to solve the problems of inaccessibility for medical services and shortage of medical personnel is ongoing. Computer vision-based medical inspection automation requires a lot of cost in data collection and labeling for training purposes. These problems stand out in the works of classifying lesion that are rare, or pathological features and pathogenesis that are difficult to clearly define visually. Anomaly detection is attracting as a method that can significantly reduce the cost of data collection by adopting an unsupervised learning strategy. In this paper, we propose methods for detecting abnormal images on chest X-RAY images as follows based on existing anomaly detection techniques. (1) Normalize the brightness range of medical images resampled as optimal resolution. (2) Some feature vectors with high representative power are selected in set of patch features extracted as intermediate-level from lesion-free images. (3) Measure the difference from the feature vectors of lesion-free data selected based on the nearest neighbor search algorithm. The proposed system can simultaneously perform anomaly classification and localization for each image. In this paper, the anomaly detection performance of the proposed system for chest X-RAY images of PA projection is measured and presented by detailed conditions. We demonstrate effect of anomaly detection for medical images by showing 0.705 classification AUROC for random subset extracted from the PadChest dataset. The proposed system can be usefully used to improve the clinical diagnosis workflow of medical institutions, and can effectively support early diagnosis in medically poor area.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

One-probe P300 based concealed information test with machine learning (기계학습을 이용한 단일 관련자극 P300기반 숨김정보검사)

  • Hyuk Kim;Hyun-Taek Kim
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.1
    • /
    • pp.49-95
    • /
    • 2024
  • Polygraph examination, statement validity analysis and P300-based concealed information test are major three examination tools, which are use to determine a person's truthfulness and credibility in criminal procedure. Although polygraph examination is most common in criminal procedure, but it has little admissibility of evidence due to the weakness of scientific basis. In 1990s to support the weakness of scientific basis about polygraph, Farwell and Donchin proposed the P300-based concealed information test technique. The P300-based concealed information test has two strong points. First, the P300-based concealed information test is easy to conduct with polygraph. Second, the P300-based concealed information test has plentiful scientific basis. Nevertheless, the utilization of P300-based concealed information test is infrequent, because of the quantity of probe stimulus. The probe stimulus contains closed information that is relevant to the crime or other investigated situation. In tradition P300-based concealed information test protocol, three or more probe stimuli are necessarily needed. But it is hard to acquire three or more probe stimuli, because most of the crime relevant information is opened in investigative situation. In addition, P300-based concealed information test uses oddball paradigm, and oddball paradigm makes imbalance between the number of probe and irrelevant stimulus. Thus, there is a possibility that the unbalanced number of probe and irrelevant stimulus caused systematic underestimation of P300 amplitude of irrelevant stimuli. To overcome the these two limitation of P300-based concealed information test, one-probe P300-based concealed information test protocol is explored with various machine learning algorithms. According to this study, parameters of the modified one-probe protocol are as follows. In the condition of female and male face stimuli, the duration of stimuli are encouraged 400ms, the repetition of stimuli are encouraged 60 times, the analysis method of P300 amplitude is encouraged peak to peak method, the cut-off of guilty condition is encouraged 90% and the cut-off of innocent condition is encouraged 30%. In the condition of two-syllable word stimulus, the duration of stimulus is encouraged 300ms, the repetition of stimulus is encouraged 60 times, the analysis method of P300 amplitude is encouraged peak to peak method, the cut-off of guilty condition is encouraged 90% and the cut-off of innocent condition is encouraged 30%. It was also conformed that the logistic regression (LR), linear discriminant analysis (LDA), K Neighbors (KNN) algorithms were probable methods for analysis of P300 amplitude. The one-probe P300-based concealed information test with machine learning protocol is helpful to increase utilization of P300-based concealed information test, and supports to determine a person's truthfulness and credibility with the polygraph examination in criminal procedure.