• Title/Summary/Keyword: 촉매 활성

Search Result 1,296, Processing Time 0.021 seconds

Effective Biodegradation of Polyaromatic Hydrocarbons Through Pretreatment Using $TiO_2$-Coated Bamboo Activated Carbon and UV ($TiO_2$로 코팅된 대나무숯 및 UV의 전처리를 통한 다환방향족탄화수소의 효율적 생분해)

  • Ekpeghere, Kalu I.;Koo, Jin-Heui;Kim, Jong-Hyang;Lee, Byeong-Woo;Yi, Sam-Nyung;Kim, Yun-Hae;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • $TiO_2$-coated bamboo activated carbon has been prepared and utilized under UV irradiation as a pretreatment method for an effective biodegradation of the recalcitrant polyaromatic hydrocarbons (PAHs). The anatase $TiO_2$ was successfully coated on the bamboo activated carbon (AC) and it showed the highest photoactivity against methylene blue. In the absence of the PAHs-degrading bacteria PAHs having low molecular weight (i.e., naphthalene, acenaphthylene, acenaphthene, and fluorene) were degraded by 9.8, 76.2, 74.1, and 40.5%, respectively. Higher molecular weight PAHs, however, maintained high residual concentrations of PAHs (400-1,000 ${\mu}g$/L) after the same treatment. On the other hand, the overall concentrations of PAHs became lower than 340 ${\mu}g$/L when the pretreated PAHs were subjected to biodegradation by a PAH-degrading consortium for a week. Herein, phenanthrene, anthracene, fluoranthene, and pyrene were removed by 29.3, 61.4, 27.0, and 44.3%, respectively, indicating the facilitated potential biodegradation of PAHs. Activated carbon coated with $TiO_2$ appeared to inhibit growth of PAH degraders on the surface of AC, indicating planktonic degraders were dominantly involved in the PAH biodegradation in presence of the $TiO_2$-coated bamboo AC. It was proposed that an effective remediation technology for the recalcitrant PAHs could be developed when an optimum pretreatment process is further established.

Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus (CNG 버스용 NGOC의 CH4 저감 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.708-715
    • /
    • 2017
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the improvement of $CH_4$ reduction ability of natural gas oxidation catalyst (NGOC), which reduces toxic gases emitted from CNG buses. Thirteen NGOCs were prepared, and the conversion performance of noxious gases according to the type of supports, the loading amount of noble metal, and surfactant and aging were determined. Support Zeolite supported on No. 3 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(46TiO_2+23Al_2O_3+23Zeolite)$ is an anionic alkali metal/earth metal component that improved the oxidation reactivity between CO and NO and noble metal dispersion, and thus enhanced the $CH_4$ reduction ability. As the loading amount of Pd, a noble metal with a high selectivity to $CH_4$, was increased, the number of reaction sites was increased and the ability to reduce $CH_4$ was improved. No. 11 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(Z20+Al80)$(pH=8.5), to which nitrate surfactant had been added, exhibited well dispersed catalyst particles with no agglomeration and improved the $CH_4$ reduction ability by 5-15%. The $NGOC(2Pt-2Pd-3Cr-3MgO/90Al_2O_3)$(48h aging), which was mildly thermal aged for 48h, increased the $CH_4$ reduction ability to about 10% or less as compared with No. 12 NGOC(Fresh).

L-AHG-mediated Suppression of M1 Polarization and Pro-inflammatory Signaling Pathways in LPS-stimulated RAW264.7 Macrophages (LPS에 의해 자극된 RAW264.7 대식세포에서 L-AHG에 의한 M1 분극화 및 친염증 신호 경로의 억제)

  • Won Young Jang;Shin Young Park;Ki Youn Kim;Do Youn Jun;Young-Seuk Bae;Young Ho Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • This study aimed to examine the influence of 3,6-anhydroxygalactose (L-AHG) on the pro-inflammatory M1 polarization and pro-inflammatory responses observed in the RAW264.7 mouse macrophage cell line following stimulation with lipopolysaccharides (LPS). L-AHG exhibited a significant and dose-dependent inhibition of inducible nitric oxide synthase (iNOS) expression, a hallmark of M1 polarization, and subsequent NO production in LPS-stimulated RAW264.7 cells. Furthermore, the LPS-induced upregulation of cyclooxygenase-2 (COX-2), which drives the production of prostaglandin E2, an inflammatory mediator, was also inhibited by L-AHG. L-AHG did not affect the LPS-triggered Toll-like receptor 4 (TLR4)-mediated pro-inflammatory signaling pathway, which culminated in the activation of transforming growth factor-β-activated kinase 1 (TAK1). However, it was observed to inhibit the generation of reactive oxugen species (ROS) in a dose-dependent manner, as well as the TAK1-driven activation of JNK and p38 MAPK. Given that the active p38 MAPK is known to contribute to the assembly of active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the intracellular generation of pro-inflammatory ROS in LPS-stimulated macrophages, the dose-dependent reduction in the LPS-induced ROS generation by L-AHG may be mainly due to the prevention of TAK1-driven activation of p38 MAPK. Together, these results demonstrate that the L-AHG-mediated inhibition of the TAK1-JNK/p38 MAPK activation phase of the pro-inflammatory signaling pathway in LPS-stimulated RAW264.7 cells by L-AHG represents a promising mechanism for suppressing M1 polarization and pro-inflammatory responses in macrophages.

Effects of Sowing Date on Grain Filling and Related Traits in Winter Barley (파종기 차이가 보리의 등숙과 등숙관련 형질에 미치는 영향)

  • 류용환;이창덕;하용웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.93-103
    • /
    • 1992
  • Experiments were conducted in the research field of the Wheat and Barley Research Institute with three barley cultivars, Olbori, Kangbori and Suwon 18, which showed different growth characteristics. The highest rates of daily dry matter accumulation in grains were 1.03 1.94 mg / grain / day in early and optimum sowings and 0.88 1.88 mg / grain / day in late sowings, which occurred around 20~30 days after heading in early and optimum sowings and 15~20 days after heading in late sowings. Grains reached their maximum weight by 40 days after heading in early and optimum sowings and 35 days after heading in late sowings. Total sugar content in grains followed a pattern of linear increase immediately after heading, but it started to decrease around 20 days after heading. On the other hand, starch content continued to increase until maturity. The contents of both components were high in the order of 'Olbori' > 'Kangbori' > 'Suwon 18', but they did not respond in a regular pattern to different sowings. 1,000 grain weight showed highly significant positive correlation(r=0.767$^{**}$) with the duration of grain growth, but it had negative correlations with the average (r=-0.548$^{**}$) or the sum (r=-0.595$^{**}$) of post-anthesis daily mean temperature.ature.

  • PDF

Changes of Major Quality Characters during Grain Filling in Waxy Corn and Super Sweet Corn (숙기에 따른 찰옥수수 및 초당옥수수의 주요 품질특성 변화)

  • 김선림;박승의;차선우;서종호;정태욱
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.73-78
    • /
    • 1994
  • This experiment was carried out to investigate the major characteristics associated with the flavor rate and their changes according to days after silking of super sweet corn(Cocktail 86) for vegetable and waxy corn(Chalok 1). Ear elongation finished around 22∼24 days after silking. In kernel development, elongation was much more prominant in super sweet corn than that in waxy corn but thickness was vice versa. Pericarp thickness and kernel hardness of super sweet corn were slightly increased but those of waxy corn were increased rapidly as the ears matured. Moisture and sucrose content of super sweet corn remained high but the waxy corn was not. The reducing sugars(glucose, fructose) were relatively high at the early maturity stage but they were decreased as the ears matured and negatively correlated with sucrose and flavor rate. Soluble solids (Brix %) were positively correlated with sucrose and total sugar(sucrose+ glucose+fructose) content in waxy corn but not in super sweet corn and was considered as inappropriate criate criterion to envaluate the sugar content and flavor rate. Pericarp thickness and sucrose content were positively correlated with the flavor rate in both hybrids but total sugar content, and kernel hardness were positively correlated with flavor rate in super sweet corn and waxy corn respectively.

  • PDF

Flowering and Pod Setting Characteristics of Peanut Varieties as Affected by Planting Date (파종기에 따른 땅콩 품종의 개화 및 결협 특성)

  • 정영근;오윤섭;김종태;오명규;박기훈;박문수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.410-415
    • /
    • 1997
  • To investigate the flowering and pod setting characteristics of peanut, Dae-kwangtangkong and Shinnamkwangtangkong were planted on April 20 and May 10 in 1994 at National Honam Agricultural Experiment Station. Number of days from planting to the maximum flowering in Daekwangtangkong were shorter than those of Shinnamkwangtangkong by 6 days in April 20 planting and by 13 days in May 10 planting. Flowering durations of Daekwangtangkong and Shinnamkwangtangkong in April 10 planting were 73 and 71 days, respectively, while those of both varieties were 64 days in May 10 planting. The rates of matured pods on cotyledonary, primary or secondary, and third branches were 58∼78, 6∼15 and 0∼2%, respectively. The rates of effective flowers in Daekwantangkong and Shinnamkwangtangkong were 10% and 8%, respectively, in April 20 planting. The rates of matured pods were 100% in Daekwangtangkong and 97% in Shinnamkwangtangkong when pods were set within 15 days after the initial flowering, while the rate was decreased markedly when pods were set later than 35 days after the initial flowering.

  • PDF

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Effect of microwave radiation on physical special quality of normal, high amylose and waxy corn starches (마이크로웨이브를 조사한 옥수수전분의 물리적 특성변화)

  • Lee Su Jin;Choe Yeong Hui
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.15 no.1
    • /
    • pp.113-125
    • /
    • 2004
  • Effect of microwave radiation on physico-chemical properties of cor'n starches was studied. Waxy com, com and high amylose com starches of varying moisture content(20~35%) were subjected to microwave processing(2450MHz) at $120^{\circ}$ and the experimental starch samples were examined by a X-ray diffractometry, rapid viscosity analyzer(RVA) and. with the samples in temperature was observed and the peaks of high amylose com starches at $2^{\circ}$=5.0, 15.0 and $23.0^{\circ}$, were disappeared indicating the melting of crystallines while those of com and waxy com had not changed. A change in gelatinization pattern was observed in the case of corn starches from type A with nearly no peak-viscosity and breakdown to type C. Except a decreased viscosity, no change was observed in those of waxy com starches.

  • PDF

Effect of Foliar Application of Boron on Growth and Yield in Sesame (붕소 엽면시비가 참깨가 생육 및 수량에 미치는 영향)

  • 정병관;김동관
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.441-449
    • /
    • 1996
  • This study was conducted to find the changes of growth, seed yield and several characteristics of sesame by leaf spray of boron as a solution which is likely to be lack in the soil. It is carried out at low land developed 5 years ago. The amount of 200l /l0a boron as boric acid is sprayed in each treatment at the 11 node stage of sesame in main stem. The spraying concentrations of boric acid are 0.0, 0.2 and 0.4% in each treatment of the level low plot and the ridge height 15cm plot. The result shows that leaf area is increased in proportion to the concentration of boric acid in each treatment of the level low and the ridge height 15cm, and the degree of increase of each node order is remarkable in lower leaves and is more remarkable in the treatment of level low plot. The effects of leaf spray of boric acid are not only the increase of leaf area but also dry weight, no. of capsule per plant, 1,000 grains weight of capsule setting under middle position. As a result, the amount of seed is increased in 53% in the treatment of level low. The change of major characteristics according to leaf spray of boric acid is generally great in the treatment of level low. Especially the increase of leaf area in the part of upper leaves and low leaves is effective to improve other characteristics.

  • PDF

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode (스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소)

  • Kim, Taeyoung;Kang, Sukwon;Chang, In Seop;Kim, Hyun Woo;Sung, Je Hoon;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.591-598
    • /
    • 2017
  • Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.