• Title/Summary/Keyword: 촉매 분산

Search Result 250, Processing Time 0.022 seconds

Liquefation Characteristics of Polypropylene by Low-Temperature Pyrolysis by using Co and Mo Dispersed Catalysts under time and loading variations (Co 및 Mo 분산촉매 반응시간과 농도 변화에 따른 PP의 저온열분해 액화특성)

  • Park, Jun-Gyu;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.281-289
    • /
    • 2015
  • This study investigated the conversion of oil products from polypropylene by using dispersed Co and Mo catalyst on reaction time and concentration change for knowledging liquefation characteristics at low-temperature (425, 450 and $475^{\circ}C$) pyrolysis in a batch reactor. The reaction time was set in 20~80 minutes and the oil products formed during pyrolysis were classfied into gas, gasoline, kero, diesel and heavy oil according to the domestic specification of petroleum products. The pyrolysis conversion rate was showed as Mo catalyst > Co catalyst > Thermal in all reaction time at reaction temperature $450^{\circ}C$. The conversion rate and yields of the pyrolysis products were the most height when Co and Mo Catalyst ratio was 50:50.

Oxygen Reduction of PAFC Gas Diffusion Electrode with Various Pt Impregnation Methods (인산형 연료전지용 기체확산전극의 백금촉매 담지방법에 따른 산소환원 특성)

  • Yoo, Duck-Young;Eun, Yeong-Chan;Shim, Joong-Pyo;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.999-1005
    • /
    • 1996
  • Pt catalyst on carbon black was prepared by colloidal method, ion exchanging method and methanol reducing method. The colloidal method has been used generally. At ion exchanging method, $H^+$ of functional group on carbon surface made by oxidation treatment was exchanged with Pt ion. At methanol reducing method, Pt was impregnated on carbon to reduce by methanol contained with surfactants. With TEM and XRD, Pt particle size impregnated on carbon by various methods was $30{\sim}50{\AA}$. Loading yield was about 100%, loading yield of ion exchanging method was 99.92% by DCP analysis and 99.87% by combustion method. Within 60 hour, current density of oxygen reduction was $460mA/cm^2$ at 0.7V(vs. RHE) at colloidal method. It was the better performance than catalyst prepared by ion exchanging, methanol reducing method. But, it was shown some decrease of performance for long operation time(after 100hour), catalyst prepared by methanol reducing method was shown stable performance.

  • PDF

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.

Direct Conversion of Cellulose into Polyols over Pt/CsxH3-xPW12O40

  • You, Su Jin;Baek, In Gu;Park, Eun Duck
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • The hydrogenolysis of cellulose into polyols was examined over Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalysts containing different Cs fractions. The surface area and Pt dispersion of Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalysts were found to increase with Cs content. Similar polyol yields were obtained over Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalysts irrespective of their Cs content. The catalytic activity of Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ was comparable to that of Ni/W/SBA-15 and combined catalytic systems such as Pt/AC+$H_3PW_{12}O_{40}$ and Pt/AC + $Cs_{3.0}PW_{12}O_{40}$. Some polyanion species were found to leach from the Pt/$Cs_xH_{3-x}PW_{12}O_{40}$ catalyst during the course of the reaction.

Preparation of Pt Catalyst Supported on Zeolite Sheet and Its Performance of Toluene Combustion (제올라이트 쉬트 담지 백금촉매의 제조 및 톨루엔 연소 특성)

  • Kim, Jin-Bae;Im, Na Rae;Kim, Hong Soo;Yoo, Yoon Jong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.323-327
    • /
    • 2011
  • A zeolite sheet (ceramic paper containing zeolite) made in a cylindrical configuration can be applied to a honeycomb rotor for the effective VOC removal. In this study, the zeolite sheet containing ZSM-5 was used as a support for Pt-loading, and its catalytic activity for the toluene combustion reaction was compared with those of the other Pt catalysts loaded on ${\gamma}-Al_2O_3$ and cordierite honeycomb. Pt/zeolite sheet catalyst showed a higher activity for toluene combustion reaction than that of $Pt/{\gamma}-Al_2O_3$ or Pt/cordierite honeycomb. On the other hand, the dispersion of Pt particles loaded on the zeolite sheet was improved by the pretreatment with $NH_3-H_2O$ vapor at room temperature. Consequently, the pretreatment of Pt/zeolite sheet by $NH_3-H_2O$ vapor significantly enhanced the catalytic activation for toluene combustion reaction.

Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods (알칼리 촉진제 성능 측정의 새로운 전환점: 도입 방식의 단순화를 통한 탐구)

  • Wonjoong Yoon;Jiyeon Lee;Jaehoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2024
  • In this study, an alkali metal Na was introduced into iron-based catalysts used in the carbon dioxide-based Fischer-Tropsch process by wet impregnation and physical mixing methods to compare their performance. The as-prepared catalysts were evaluated for reactivity at 3.5 MPa, 330 ℃, feed ratio of H2/CO2 = 3 with a space velocity of 4,000 mL h-1 gcat-1. Comparing the two catalysts, it was found that Na was uniformly distributed throughout the catalyst when wet-impregnated, but Na for physically mixed catalyst was relatively located on the surface of the catalyst. In addition, the wet-impregnated catalyst showed higher liquid hydrocarbon (C5+) yield and lower CO selectivity. In conclusion, the effect of Na distribution in the catalyst on the reaction was identified and can be controlled by the introduction method.

Effects of surface properties and solution ph on the pollutants removal of K-PAC (K-PAC의 오염물질 제거에 대한 용액의 pH와 표면 특성의 효과)

  • Oh, Won-Chun;Bae, Jang-Soon
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.436-443
    • /
    • 2005
  • A study of physical properties and their application using K-powdered activated carbon system followed powdered carbon dispersion was carried out at laboratory. scale. Two types of K-powdered activated carbon for the dispersion have been used in this study to investigate the catalytic removal efficiency of pollutants from the wastewater. From the surface properties obtained for carbon samples treated with aqueous solutions containing potassium salts, main investigations were subjected to isotherm shape, SEM, EDX and surface functional groups. K-powdered activated carbons were dispersed to wastewater with pH variation to investigate the removal efficiency for the color, COD, T-N and T-P. From these removal results of the piggery waste using K-powdered activated carbon, satisfactory removal performance in the region of pH 6~8 was achieved. The excellent effects for the dispersion of the K-powdered activated carbon were proved by the above mentioned properties of the material for adsorption and trapping of organics, and catalytic effects.

Synthesis and Characterization of Oxygen Evolution Nanofiber electrocatalyst for Water Electrolysis (수전해 산소발생을 위한 나노섬유 전기화학 촉매 합성 및 특성분석)

  • Won, Mi-So;Jang, Myeong-Je;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.186-186
    • /
    • 2016
  • 수소는 연료전지 등의 에너지원으로 사용될 경우 NOx, SOx, $CO_2$ 등의 한경오염물질, 온실가스를 발생시키지 않기 때문에 친환경 에너지원으로 각광을 받고 있다. 수전해는 수소를 생산하는 가장 간단하고 효율적인 방법 중의 하나로서, 잉여전력 또는 신재생에너지에 의한 전기에너지를 통해 환경오염물질 발생 없이 고순도의 수소를 얻을 수 있으며 분산/대량 생산이 용이하다. 수전해에서 환원전극에서는 수소발생반응이 일어나고, 산화전극에서는 산소발생반응이 일어난다. 이때 주로 산소발생전극 촉매로는 과전압이 작게 걸리고 활성이 우수한 귀금속 계열의 $IrO_2$$RuO_2$ 등의 촉매가 현재 사용되고 있다. 본 연구에서는 고분자 용액을 만들어 전기방사를 이용하여 공정변수에 따른 직경과 morphology를 확인하였고, 고가의 귀금속 산화물 대신 저렴한 전이금속산화물인 Cu와 Co를 이용하여 1D 나노섬유를 산소발생 촉매로 합성하였다. 합성된 나노섬유의 구조적, 물리화학적 특성을 분석하고 산소발생반응(OER)에 대한 전기화학적 활성 및 내구성을 평가하였다.

  • PDF