• Title/Summary/Keyword: 촉매연소

Search Result 342, Processing Time 0.026 seconds

Catalytic Characteristics of Mn-PC for VOCs Combustion (VOCs 연소용 Mn-PC 촉매 특성)

  • Seo, Seong-Gyu;Ma, Zhong-Kun;Liu, Yi;Yoon, Hyung-Sun;Kim, Sang-Chai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.237-242
    • /
    • 2011
  • In this study, the catalytic activity of Mn-Phthalocyanine (Mn-PC) for VOCs (acetadehyde, propionaldehyde and toluene) combustion was determined. The reaction was carried out in a fixed bed reactor at the temperature range of $200{\sim}380^{\circ}C$. We investigated the physicochemical properties of Mn-PC before and after the pretreatment (air, $450^{\circ}C$, 1 hr, 60 cc/min) by TGA (Thermogravimetric Analyzer), BET (Brunauer Emmett Teller), EA (Elemental Analyzer), XRD (X-ray Diffractometer) and SEM (Scanning Electronic Microscope). By TGA analysis, 88 wt.% mass loss of Mn-PC was found at $419^{\circ}C$. The BET surface area of Mn-PC increased after the pretreatment. The decomposition and combustion of organic components in Mn-PC were observed by EA analysis. We also confirmed that Mn-PC had transformed into a new manganese oxide phase ($Mn_3O_4$) after the pretreatment by XRD analysis. By SEM analysis, many of the micropores generated during the pretreatment were found. The catalytic activity of Mn-PC with the pretreatment for propionaldehyde combustion was higher than that of $Mn_3O_4$ and fresh Mn-PC. It showed the catalytic activity of Mn-PC with the pretreatment for VOCs combustion by the order of toluene < acetadehyde < propionaldehyde.

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.

Development of a Catalytic Heat Exchanger (촉매연소 열교환기 개발)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Seo, Yong-Seog;Cho, Sung-June;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.63-69
    • /
    • 1999
  • The heat exchanger using the catalytic combustion can be applied to petrochemical processes and to VOC incineration facilities. In this work, the experiment for a new fin typed catalytic heat exchanger was conducted. Catalysts for the heat exchanger were determined by testing their catalytic activities over LPG in a micro-reactor. Based on experimental results of the fin typed catalytic heat exchanger, a small scaled heat exchange system was made to test its feasibility as a reboiler used in petrochemical processes. The results showed that the catalytic heat exchanger could combust off-gases effectively and at the same time could recover completely heat produced by catalytic combustion.

  • PDF

Characteristics of Metal-Phthalocyanine for Catalytic Combustion of Methanol (메탄올의 촉매연소에 대한 금속-프탈로시아닌의 특성)

  • Seo, Seong-Gyu;Yoon, Hyung-Sun;Lee, Sun-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1809-1816
    • /
    • 2000
  • The catalytic combustion of methanol as a model volatile organic compound(VOC) was been investigated over metal-phthalocyanine(PC) in a fixed bed flow reactor system. The catalytic activity of Co-PC pretreated with air and methanol mixture at $450^{\circ}C$ and 60 cc/min for 1 hr was very excellent. The order of catalytic activity on methanol combustion was summarized as follows: metal free-PC < Zn-PC < Fe-PC < Cu($\alpha$)-PC < Co-PC. By TG/DTA analysis, the tendency of thermal decomposition was increased as follows: metal free-PC < Zn-PC < Cu($\alpha$)-PC < Co-PC < Fe-PC. Under this pretreatment condition, the basic structures of Co-PC, Cu($\alpha$)-PC and Fe-PC were destroyed, and the new metal oxide such as $Co_3O_4$ from Co-PC was confirmed by EA and XRD analysis. But Zn-PC and metal free-PC were retained its basic structure under this pretreatment condition. On the combustion of methanol over Co-PC, HCHO and $HCOOCH_3$ were observed as an intermediate products in the high concentration of reactant or the short contact time(W/F).

  • PDF

Thermal Durability Characteristics of Precious Metal(Pt) and Additives for a Catalytic Combustor (촉매연소기용 귀금속 촉매와 조촉매의 열적 내구특성 연구)

  • Choi, Byungchul;Ko, Byeongwoon;Kim, Myeonghwan;Sin, Hyeok
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2020
  • The purpose of the study is to investigate the thermal durability characteristics of the Pt catalyst and additives used in a catalytic combustor. The catalyst used in the experiment was based on Pt (3 wt%), and a total of 12 types were prepared using a combination of additives (Ni, La, Ce, Fe, and Co). From the results, In the fresh state, the two types of combination catalysts with the highest C3H8 conversion were Pt_Ce (79.9%) at 500℃, and in the three types of combination catalysts, Pt_La_Ni (93.4%) at 500℃ had the best performance. Among aged catalysts at 850℃ and 8 hours, Pt-La-Ni and Pt-Ni-Ce catalysts showed the highest C3H8 conversion of about 71% at 500℃.

Catalytic Combustion of Benzene over Perovskite-type Oxides Prepared Using Malic Acid Method (능금산법으로 제조된 페롭스카이트형 산화물에서 벤젠의 촉매연소반응)

  • Jung, Won-Young;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Perovskite-type oxides were successfully prepared using malic acid method, characterized by TG/DTA, XRD, XPS, TEM and $H_2$-TPR and their catalytic activities for the combustion of benzene were determined. Almost of catalyst showed perovskite crystalline phase and 15-70 nm particle size. The $LaMnO_3$ catalysts showed the highest activity and the conversion reaches almost 100% at $350^{\circ}C$. The catalysts were modified to enhance the activity through substitution of metal into the A or B site of the perovskite oxides. In the $LaMnO_3$-type catalyst, the partial substitution of Sr into site the A-site enhanced the catalytic activity in the benzene combustion. In addition, the partial substitution of Co or Cu into site the B-site also enhanced the catalytic activity and the catalytic activity was in the order of Co > Cu > Fe in the $LaMn_{1-x}B_xO_3$ (B = Co, Fe, Cu) type catalyst.

Catalytic Combustion of Benzene over CuO-CeO2 Mixed Oxides Prepared by Co-precipitation Method (침전법으로 제조된 CuO-CeO2 혼합산화물에서 벤젠의 촉매연소반응)

  • Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • Catalytic combustion of benzene over CuO-$CeO_2$ mixed oxides prepared by co-precipitation method were investigated. The CuO-$CeO_2$ mixed oxides were also prepared using different precipitant and CuO precursor. They were characterized by XRD, BET, XPS and $H_2-TPR$. In the CuO-$CeO_2$ catalysts, characteristic copper oxide peaks were shown at $2{\Theta}=35.5^{\circ}$ and $38.5^{\circ}$ regardless of the precipitant. The Cu0.35 catalyst prepared using $NH_4OH$ as a precipitant revealed the highest activity on the combustion of benzene. In addition, the pretreatment with hydrogen enhanced the catalytic activity and the catalyst reduced at $400^{\circ}C$ showed the highest activity on the combustion of benzene.

Development of a Enamel Coating Machine Typed VOC Incineration and Flue Gas Recirculation (VOC 소각 및 연소가스 재 순환 에나멜 도장장치 개발)

  • 정남조;유인수;유상필;송광섭
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.579-587
    • /
    • 2003
  • A lot of VOCs that is noxious ate exhausted at drying process of enamel coating device. This VOC gas can be incinerated perfectly through catalytic combustion, and heat that is occurred in incineration process ran be again used in drying process. By using VU catalytic combustion technology, in this study, we developed a enamel coating machine that have an excellent environment improvement and energy saying effect. As basic research for this development characteristics ana performance of catalytic combustion for VOC gas was evaluated and numerical analysis for drying oven was calculated. According to the result, VOCs combustion characteristics of metal form catalysis was excellent in high temperature, and it was seen that enamel coating machine should be designed as a precious controllable structure of recirculating supply rate and suction rate.

  • PDF

The study of combustion gas characteristic by incinerator operation condition. (소각로 운영조건에 따른 연소배가스 특성 연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2010
  • This study was done to analyze the condition of combustion exhaust gas that is produced according to incinerator operating condition in A area Kyonggido. The boiler exhaust gas temperature, the oxygen concentration of boiler, the outgassing temperature of Semi Drying Sorber(SDS), the temperature of catalytic reactor, the concentration of NOx, SOx, CO, Hcl and Dust were investigated by change the temperature of incinerator. The concentration of SOx, CO, HCL and DUST were below 5 ppm as increase the temperature of incinerator however the concentration of NOx was increased from 40 ppm to 70 ppm as increase the temperature of incinerator. The boiler exhaust gas temperature and the temperature of catalytic reactor were not changed however the oxygen concentration of boiler was decreased gradually as increase the temperature of incinerator.

Performance Study of Micro Monopropellant Thruster with ADN-Based Propellant (ADN 기반 추진제를 적용한 마이크로 단일추진제 추력기 성능 평가)

  • Kim, Juwon;Huh, Jeongmoo;Baek, Seungkwan;Kim, Wooram;Jo, Youngmin;Lee, Doyun;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.757-763
    • /
    • 2017
  • The combustion test of LMP-103S, a propellant based on ADN(Ammonium Dinitramide), was performed with a 50 mN scale micro-thruster. The micro-thruster was made with photosensitive glass using MEMS manufacturing process. $Pt/{\gamma}-Al_2O_3$ was used as a catalyst to decompose LMP-103S. After injecting 90 wt.% hydrogen peroxide into combustion chamber to preheat the catalyst, LMP-103S was injected for the combustion test. As a result, the ignition and combustion of LMP-103S was confirmed in platinum catalyst environment with the combustion chamber temperature going up to $650^{\circ}C$.

  • PDF