• Title/Summary/Keyword: 촉각 센서

Search Result 111, Processing Time 0.04 seconds

Alternative tactile sensor for measuring rehabilitation study using to neural network (신경망을 적용한 재활훈련 측정용 대체 촉각 센서 연구)

  • Lim, Seung-Cheol;Jin, Go-Whan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.23-29
    • /
    • 2012
  • Injured peoples usually care their body at medical institutions. But if they need some more rehabilitation to the affected area thus exist. These medical institutions according to the scale there are significant differences in rehabilitation programs, most of the small-scale rehabilitation program for medical doctors and patients to be progression of the conversation is an issue. In this paper, in a small medical facility rehabilitation to assist in the accuracy and reliability, physical contact and force sensors that can measure a combination of substitution and the tactile sensor and tactile sensor alternative with a similar function is proposed. Perceptron neural networks by applying the contact evaluation according to the algorithm to determine the pattern is applied.

A Study on Tactile Sensation Application for Computer Game and Virtual Reality (컴퓨터게임과 가상현실을 위한 촉각 응용에 관한 연구)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.646-654
    • /
    • 2002
  • The human sense of touch provides us with an important source of information about our surroundings. Because of its unique position at interface between our bodies and the out world, touch sensation supplies sensory data which helps us manipulate and recognize objects and warn of harmful situation. But tactile sensation was recognized less important than visual sense and auditory sense but it plays an important immersing role in virtual reality and computer game. Tactile sensation can be used to influence to objects according to power and supplied sensory feedback to the player in a virtual environment. This paper investigated the characteristics of tactile sensation of human being and proposed method of sturdy using force sensing sensor, simple force modeling and data structure form for virtual reality and computer game. As a result, force distribution, depth, center point can be calculated using sensor output and this information is very effective to specific position for actions and reactions. This study can used as basic information for tactile sensation and it's application in computer game and virtual realty.

  • PDF

Development of Flexible Force Sensor Using Fiber Bragg Grating for Tactile Sensor and Its Evaluation (광섬유 브래그 격자를 이용한 촉각 센서용 유연 단축 힘 센서의 개발 및 평가)

  • Heo, Jin-Seok;Lee, Jung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.51-56
    • /
    • 2006
  • This paper shows the development of flexible force sensor using the fiber Bragg grating. This force sensor consists of a Bragg grating fiber and flexible silicone rubber (DC184, Dow corning co. Ltd). This sensor does not have special structure to maximize the deflection or elongation, but have good sensitivity and very flexible characteristics. In addition, this sensor has the immunity to the electro magnetic field and can be multiplexed easily, which is inherited from the characteristics of fiber Bragg grating sensor. In the future, this sensor can be utilized the tactile sensor system minimizing the sensor size and developing the fabrication method.

로봇의 촉각기구

  • Kim, Jong-Ho;Gwon, Hyeon-Jun;Park, Yeon-Gyu;Gang, Dae-Im
    • Journal of the KSME
    • /
    • v.48 no.9
    • /
    • pp.49-53
    • /
    • 2008
  • 이 글에서는 사람의 관절에 해당하는 큰 힘 영역이 아닌 피부처럼 접초력, 온도 등 감각을 느낄 수 있는 촉각센서 기술과 이를 활용한 다양한 응용분야에 대해 소개하고자 한다.

  • PDF

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

Motor and Sensor Technology for Intelligent Robots (지능형 로봇 부품 기술 동향)

  • Kim, H.J.;Yoon, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.22 no.2 s.104
    • /
    • pp.58-69
    • /
    • 2007
  • 지능형 로봇은 우리 인간의 삶의 공간으로 한층 접근하고 있으며, 앞으로 미래 산업에 큰 비중을 차지할 것이라 예상된다. 이에 지능형 로봇의 구현에 필수적인 부품 기술을 구동기와 센서 기술을 중심으로 살펴본다. 구동기 기술로는 PMDC, BLDC, 스테핑 모터, 초음파 모터와 최근 연구실을 중심으로 많이 연구되는 인공 근육에 대해 살펴본다. 센서기술로는 가속도 센서, 각속도 센서, 초음파 센서, 청각 센서, 시각 센서, 액티브 비컨 센서, 그리고 촉각 센서를 살펴본다. 부품 기술들의 간단한 원리와 종류 그리고 기술동향을 살펴봄으로써 지능형 로봇 산업에서 중요하게 사용될 부품들을 정리해본다.

Control of robotic hand by behavior-based tactile servoing (촉각 센서를 이용한 로봇 손의 행위 기반 제어)

  • Park, No-Hoon;Oh, Sang-Rok;Park, Jong-Hyun;You, Bum-Jae;Oh, Yong-Hwan;Yoon, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2399-2401
    • /
    • 2003
  • 시각 장애인의 경우 어떤 물체를 집어 들기 위해서는 처음에 물체를 더듬으면서 전체 형상을 파악하게 된다. 손의 촉각을 이용하여 충분히 물체의 특징을 파악하게 되면, 무게 중심이 될 만한 지점에 접촉하여 물체를 한 번쯤 들어보게 된다. 시각 등 다른 감각의 제한을 받는 조건에서 촉각만으로 물체 파지(object-graping)을 수행하고자 할 때, 일련의 행위들을 반복하게 된다. 본 논문은 촉각을 이용한 로봇 손의 행위 기반 제어 연구에 관한 것으로 R.Brooks가 제안한 subsumption architecture(SA)을 진화시켜 본 연구실에서 개발한 4DOF hand에 적용하였다.

  • PDF

Reliability of Muscle Evaluation with a Tactile Sensor System (촉각센서를 이용한 근육평가의 신뢰도 조사)

  • Oh, Young-Rak;Lee, Dong-Ju;Kim, Sung-Hwan;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.337-344
    • /
    • 2005
  • A tactile sensor employs a piezoelectric element to detect contact frequency shifts and thereby measure the stiffness or softness of material such as tissue, which allows the sensor to be used in many fields of research for urology, cardiology, gynecology, sports medicine and caner detection and especially for cosmetics and skin care. In this study, reliability of the tactile sensor system was investigated with its manual application to the muscles susceptible to temporomandibular disorders. Stiffness and elasticity of anterior temporalis, masseter and trapezius muscles were calibrated bilaterally from 5 healthy men with an average of 24.5$\pm$0.94 years. The tactile sensor used in this study had a computer-controlled and motor-driven sensor unit which automatically pressed down on the skin surface over the muscles being measured and retracted, thereby providing the hysteresis curve. The slope of the tangent of the hysteresis curve (${\Delta}f/{\Delta}x$) is defined as stiffness of the muscle being measured and the distance between the two parts of the curve as its elasticity. To determine inter-examiner reliability, all the measurements were performed by the two examiners A and B, respectively and the same examination were repeated with an interval of 2 days for intra-examiner reliability. The results from this study demonstrated high reliability in measuring stiffness and elasticity of anterior temporalis, masseter and upper trapezius muscles using a tactile sensor system. It is suggested that the tactile sensor system can be a highly reproducible and effective instrument for quantitative evaluation of the muscle in head and neck region.

Design and analysis of tactile sensor for tri-axial force measurement using FEM (유한요소해석을 이용한 3축 힘 촉각센서 설계 및 해석)

  • Cho, Woon-Ki;Kim, Jong-Ho;Kang, Dae-Im;Lee, Ouk-Sub
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.865-870
    • /
    • 2001
  • A sensing element for tri-axial force measurement, unit sensor of tactile sensor, was designed and evaluated by using finite element method (ANSYS). The sensor has a maximum force range of ${\pm}10$ N in the x, y, and z direction. Optimal cell structures and piezoresistor positions were determined by the strain distribution obtained from finite element analysis. Finally three Wheatstone birdge circuits were arranged and verified by $F_x$, $F_y$, and $F_z$ loading conditions. In addition, in case of sensing element subjected to thermal loading, the outputs of three bridge circuits were also evaluated.

  • PDF