• 제목/요약/키워드: 초해상도

검색결과 303건 처리시간 0.032초

ESCPN을 이용한 초해상화 시 활성화 함수에 따른 이미지 품질의 비교 (Comparison of image quality according to activation function during Super Resolution using ESCPN)

  • 송문혁;송주명;홍연조
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.129-132
    • /
    • 2022
  • 초해상화란 저화질의 이미지를 고화질의 이미지로 변환하는 과정이다. 본 연구에서는 ESPCN 을 이용하여 연구를 진행하였다. 초해상화 심층 신경망에서 각 노드를 거칠 때 가중치를 결정하는 활성화 함수에 따라 같은 입력 데이터를 받더라도 다른 품질의 이미지가 출력될 수 있다. 따라서 활성화 함수 ReLU, ELU, Swish를 적용시켜 같은 입력 이미지에 대한 출력 이미지의 품질을 비교하여 초해상화에 가장 적합한 활성화 함수를 찾는 것이 이 연구의 목적이다. 초해상화를 위한 Dataset은 BSDS500 Dataset을 사용하였으며, 전처리 과정에서 이미지를 정사각형으로 자른 뒤 저화질화 하였다. 저화질화된 이미지는 모델의 입력 이미지에 사용되었고, 원본 이미지는 이후 출력 이미지와 비교하여 평가하는데 사용되었다. 학습 결과 머신 러닝에 주로 쓰이는 ReLU보다는 그 단점이 개선된 ELU, swish가 훈련 시간은 오래 걸렸지만 좋은 성능을 보였다.

  • PDF

두 장의 이미지를 활용한 이미지 화질 저하 커널 예측 (Blind Super-Resolution Kernel estimation using two images)

  • 조선우;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.303-306
    • /
    • 2021
  • 이미지 초해상도는 영상 취득 과정에서 센서와 렌즈의 물리적인 한계 등으로 인하여 의해 화질이 저하된 이미지를 더 높은 배율로 복원하는 문제이다. 이미지 초해상도는 딥러닝을 통해 놀라운 성능향상을 이루었지만, 카메라로 촬영된 실제 이미지에서는 좋은 성능을 내지 못하였다. 이는 딥러닝에서는 'bicubic' 커널로 down-sampling된 합성 이미지 데이터를 사용하였던 것과 달리 실제 이미지에서는 'bicubic' 커널을 통한 화질 저하와는 다른 화질 저하, 즉 다른 커널을 통한 화질 저하가 발생하기 때문이다. 따라서 실제 이미지에 대한 성능을 높이기 위해서는 이에 대한 정확한 커널 예측이 필요하다. 최근 주목받기 시작한 이미지 초해상도를 위한 커널 예측은 초해상도를 잘 시켜주는 커널을 직접 찾는 방법[10, 13]과 이미지의 분포와 커널을 통해 다운샘플된 이미지에 대한 분포를 일치시켜주면서 커널을 예측하는 방법[14]으로 나누어져 있다. 그러나 두 방법 모두 ill-posed problem 인 커널 예측 문제를 한 장의 이미지만으로 해결하려는 것이기 때문에 정확한 예측에는 어려움이 발생한다. 따라서 본 논문에서는 두 장의 이미지를 활용한 이미지 화질 저하 커널 예측 방법을 제안한다. 제안된 방법은 두 장의 이미지가 같은 카메라를 통해 촬영되었으며 이때 이미지 화질 저하는 카메라에 의해서만 영향을 받는다는 가정을 기반으로 한다. 즉, 두 장의 이미지는 같은 커널을 통해 저하된 이미지라는 가정을 한다. 제안된 방법은 [14]에서처럼 이미지 분포를 기반으로 한 커널 예측을 진행하며, 이미지 초해상도를 진행하고자 하는 이미지 외에 참고 이미지 또한 같은 커널에서 화질 저하를 시켰을 때 본래의 이미지와 같은 분포에 있도록 학습을 진행한다. 결과적으로 본 논문에서는 두 장의 이미지를 사용하였을 때 더욱 정확하게 커널을 찾을 수 있음을 보여준다. 두 장의 이미지를 활용하는 방식이 한 장의 이미지만을 활용하는 기존의 최고 수준의 방법에 비해 합성된 다양한 커널 데이터셋[14]에서 약 0.17dB 성능 향상이 있었다.

  • PDF

SRCNN과 VDSR의 구조와 방법 및 개선된 성능평가 함수 (Structure, Method, and Improved Performance Evaluation Function of SRCNN and VDSR)

  • 이광찬;왕광싱;신성윤
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.543-548
    • /
    • 2021
  • 이미지는 해상도가 높을수록 이미지를 시청하는 사람들의 만족도가 높아지며 초고해상도 이미지화는 컴퓨터 비전이나 영상처리 분야 중에서도 연구 가치가 꽤 높아지고 있다. 본 연구에서는 주로 딥 러닝 초 해상도 모델을 사용하여 저해상도 이미지 LR의 주요 특징을 추출한다. 추출된 특징을 학습 및 재구성하고, 고해상도 이미지 HR을 생성하는 재구성 기반 알고리즘에 중점을 둔다. 본 논문에서는 재구성에 기반을 둔 초 해상도 알고리즘 모델에서 SRCNN과 VDSR에 대하여 알아보도록 한다. SRCNN과 VDSR모델의 구조 및 알고리즘 프로세스를 간략하게 소개하고 개선된 성능평가 함수에서도 다중 채널과 특수한 형태에 대하여 알아보도록 하며, 실험을 통하여 각 알고리즘의 성능을 이해하도록 한다. 실험에서는 SRCNN 및 VDSR 모델의 결과와 피크 신호 대 잡음 비 및 이미지 구조 유사도를 비교하는 실험을 수행하여 결과를 한눈에 볼 수 있도록 하였다.

대안적 통째학습 기반 저품질 레거시 콘텐츠에서의 문자 인식 알고리즘 (Character Recognition Algorithm in Low-Quality Legacy Contents Based on Alternative End-to-End Learning)

  • 이성진;윤준석;박선후;유석봉
    • 한국정보통신학회논문지
    • /
    • 제25권11호
    • /
    • pp.1486-1494
    • /
    • 2021
  • 문자 인식은 스마트 주차, text to speech 등 최근 다양한 플랫폼에서 필요로 하는 기술로써, 기존의 방법과 달리 새로운 시도를 통하여 그 성능을 향상시키려는 연구들이 진행되고 있다. 그러나 문자 인식에 사용되는 이미지의 품질이 낮을 경우, 문자 인식기 학습용 이미지와 테스트 이미지간에 해상도 차이가 발생하여 정확도가 떨어지는 문제가 발생된다. 이를 해결하기 위해 본 논문은 문자 인식 모델 성능이 다양한 품질 데이터에 대하여 강인하도록 이미지 초해상도 및 문자 인식을 결합한 통째학습 신경망을 설계하고, 대안적 통째학습 알고리즘을 구현하여 통째 신경망 학습을 수행하였다. 다양한 문자 이미지 중 차량 번호판 이미지를 이용하여 대안적 통째학습 및 인식 성능 테스트를 진행하였고, 이를 통해 제안하는 알고리즘의 효과를 검증하였다.

원격 탐사 영상을 활용한 CNN 기반의 초해상화 기법 연구 (A Study of CNN-based Super-Resolution Method for Remote Sensing Image)

  • 최연주;김민식;김용우;한상혁
    • 대한원격탐사학회지
    • /
    • 제36권3호
    • /
    • pp.449-460
    • /
    • 2020
  • 초해상화 기법은 저해상도 영상을 고해상도 영상으로 변환하는 기법이다. 최근에는 딥러닝 기술을 활용한 초해상화 방법이 주류를 이루고 있으며, 원격 탐사 분야에서도 이를 응용한 연구가 증가하고 있다. 본 연구에서는 위성 영상의 4배 해상도 향상을 위하여 deep back-projection network (DBPN) 네트워크에 기반한 초해상화 기법을 제안하였다. 또한, 복원된 영상의 디테일 및 윤곽선 부분에서의 고품질 영상 획득을 위해 윤곽선 손실 함수를 제안하고, 효과적이고 안정적인 학습을 위하여 Wasserstein distance 손실 함수를 사용한 GAN 기법을 적용하였다. 또한, 자연스러운 저해상도 훈련 영상을 획득하기 위한 detail preserving image downscaling (DPID) 기법을 적용하였다. 마지막으로 전정 영상의 특징을 추출하여 훈련의 마지막 단계에 적용 시킴으로써 출력 영상의 세부적인 특징을 효과적으로 생성하였다. 그 결과 실험에 사용된 WorldView-3 영상 및 KOMPSAT-2 영상에서 해상도 향상 효과를 확인하였고, 다른 초해상화 모델에 대비하여 윤곽선 보존력이나 영상의 선명도가 향상 되었음을 확인하였다

GPU 를 이용한 콘볼루션 뉴럴 네트워크 기반 초해상화 설계 및 구현 (Accelerating Deep learning based Super resolution algorithm using GPU)

  • 기세환;최재석;김수예;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.190-191
    • /
    • 2017
  • 본 논문에서는 딥 콘볼루션 신경망 구조를 사용하여 학습된 초해상화 알고리즘을 GPU 프로그래밍을 통해 실시간 동작이 가능하도록 하는 방법을 제시하였다. 딥 러닝이 많이 대중화 되면서 많은 영상처리 알고리즘이 딥러닝을 기반으로 연구가 되었다. 하지만 계산 량이 많이 필요로 하는 딥 러닝 기반 알고리즘은 UHD 이상의 고해상도 영상처리에는 실시간 처리가 어려웠다. 이런 문제를 해결하기 위해서 고속 병렬 처리가 가능한 GPU 를 사용해서 2K 입력영상을 4K 출력 영상으로 확대하는 딥 초해상화 알고리즘을 30 fps 이상의 처리 속도로 동작이 가능하도록 구현을 하였다.

  • PDF

딥러닝 기반 초해상화 기술을 이용한 MIV 성능 개선 (Improvement of MIV using Deep Learning based Super Resolution)

  • 정태현;이윤섭;오관정;오병태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.44-46
    • /
    • 2022
  • 본 논문에서는 TMIV 부호화 과정에서 개선된 압축성능을 위해 딥러닝을 이용한 초해상화 기술을 적용하는 방식을 제안한다. 제안 방식에서는 TMIV 인코더에서 아틀라스 생성한 후, 해당 아틀라스의 패킹된 뷰들을 downsampling하여 뷰들이 축소된 아틀라스를 생성하는 방식을 사용한다. 생성된 아틀라스는 기존의 방식 그대로 VVC를 이용하여 부복호화를 한다. 복호화된 아틀라스를 렌더링을 위해 뷰로 만드는 과정 중에 딥러닝을 이용한 초해상화 기술을 적용하여 줄어든 뷰들을 원래의 크기로 복원시킨다. 제안 기술을 통해 복원된 뷰의 화질을 유지시킨 채 많은 비트율을 감소시킬 수 있음이 확인된다.

  • PDF

두 개의 구분자 기반의 초해상화 기법을 이용한 다중객체 검출 방법 (Multiple Objects Detection using Super-Resolution Method with Two Discriminators)

  • 김진서;정영민;황성빈;권오설
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.82-84
    • /
    • 2022
  • 최근 자율주행에서 안전한 주행을 위해 영상 기반 다중객체 검출 기술이 활발히 연구되고 있다. 이때, 저해상도 영상은 객체 검출 단계에서 정확도가 떨어지는 한계가 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 초해상화와 객체 검출을 위한 방법을 함께 사용하는 기법을 제안한다. 더 나아가 초해상화 단계에서 하나의 구분자만 사용하는 기존의 방법과 다르게 이미지 생성 과정 중간에서 추가의 구분자를 사용하여 총 두 개의 구분자를 사용하여 성능을 향상하고자 하였다. 본 논문은 한국 고속도로 교통 데이터를 사용하여 실험하였으며, 그 결과 제안된 방법의 성능이 mAP@0.5 및 F1 점수 측면에서 기존 방법보다 우수하다는 것을 확인하였다.

  • PDF

생성적 적대 신경망 기반의 딥 러닝 비디오 초 해상화 모델 경량화 및 최적화 기법 연구 (A Study on Lightweight and Optimizing with Generative Adversarial Network Based Video Super-resolution Model)

  • 김동휘;이수진;박상효
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1226-1228
    • /
    • 2022
  • FHD 이상을 넘어선 UHD급의 고해상도 동영상 콘텐츠의 수요 및 공급이 증가함에 따라 전반적인 산업 영역에서 네트워크 자원을 효율적으로 이용하여 동영상 콘텐츠를 제공하는 데에 관심을 두게 되었다. 기존 방법을 통한 bi-cubic, bi-linear interpolation 등의 방법은 딥 러닝 기반의 모델에 비교적 인풋 이미지의 특징을 잘 잡아내지 못하는 결과를 나타내었다. 딥 러닝 기반의 초 해상화 기술의 경우 기존 방법과 비교 시 연산을 위해 더 많은 자원을 필요로 하므로, 이러한 사용 조건에 따라 본 논문은 초 해상화가 가능한 딥 러닝 모델을 경량화 기법을 사용하여 기존에 사용된 모델보다 비교적 적은 자원을 효율적으로 사용할 수 있도록 연구 개발하는 데 목적을 두었다. 연구방법으로는 structure pruning을 이용하여 모델 자체의 구조를 경량화 하였고, 학습을 진행해야 하는 파라미터를 줄여 하드웨어 자원을 줄이는 연구를 진행했다. 또한, Residual Network의 개수를 줄여가며 PSNR, LPIPS, tOF등의 결과를 비교했다.

  • PDF

디블러를 고려한 초해상화 모델 기반 차량 번호판 인식 성능 개선 (Improving License Plate Recognition Based on a Deblurring Super-Resolution Model)

  • 이여진;문용혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.473-475
    • /
    • 2023
  • 자동차 번호판 인식은 영상 내 검출한 차량의 번호판의 문자열을 인식하여 차량을 식별하고 추적하는 기술로 주변 환경에 의한 잡음, 왜곡과 차량의 움직임으로 발생한 흐림, 영상 입력 장치와의 물리적 거리 등에 강인해야 한다. 본 논문에서는 차량 움직임으로 발생한 흐림이 있는 저해상도 영상에 대한 번호판 인식 성능의 향상을 위해 디블러링 모델과 초해상화 모델을 이용한 영상 복원 방법을 제안한다. 실험을 통해 디블러링 모델과 초해상화 모델을 결합하여 흐림이 있는 저해상도 국내 번호판 영상에서의 인식 성능을 개선하였다.