초해상화란 저화질의 이미지를 고화질의 이미지로 변환하는 과정이다. 본 연구에서는 ESPCN 을 이용하여 연구를 진행하였다. 초해상화 심층 신경망에서 각 노드를 거칠 때 가중치를 결정하는 활성화 함수에 따라 같은 입력 데이터를 받더라도 다른 품질의 이미지가 출력될 수 있다. 따라서 활성화 함수 ReLU, ELU, Swish를 적용시켜 같은 입력 이미지에 대한 출력 이미지의 품질을 비교하여 초해상화에 가장 적합한 활성화 함수를 찾는 것이 이 연구의 목적이다. 초해상화를 위한 Dataset은 BSDS500 Dataset을 사용하였으며, 전처리 과정에서 이미지를 정사각형으로 자른 뒤 저화질화 하였다. 저화질화된 이미지는 모델의 입력 이미지에 사용되었고, 원본 이미지는 이후 출력 이미지와 비교하여 평가하는데 사용되었다. 학습 결과 머신 러닝에 주로 쓰이는 ReLU보다는 그 단점이 개선된 ELU, swish가 훈련 시간은 오래 걸렸지만 좋은 성능을 보였다.
이미지 초해상도는 영상 취득 과정에서 센서와 렌즈의 물리적인 한계 등으로 인하여 의해 화질이 저하된 이미지를 더 높은 배율로 복원하는 문제이다. 이미지 초해상도는 딥러닝을 통해 놀라운 성능향상을 이루었지만, 카메라로 촬영된 실제 이미지에서는 좋은 성능을 내지 못하였다. 이는 딥러닝에서는 'bicubic' 커널로 down-sampling된 합성 이미지 데이터를 사용하였던 것과 달리 실제 이미지에서는 'bicubic' 커널을 통한 화질 저하와는 다른 화질 저하, 즉 다른 커널을 통한 화질 저하가 발생하기 때문이다. 따라서 실제 이미지에 대한 성능을 높이기 위해서는 이에 대한 정확한 커널 예측이 필요하다. 최근 주목받기 시작한 이미지 초해상도를 위한 커널 예측은 초해상도를 잘 시켜주는 커널을 직접 찾는 방법[10, 13]과 이미지의 분포와 커널을 통해 다운샘플된 이미지에 대한 분포를 일치시켜주면서 커널을 예측하는 방법[14]으로 나누어져 있다. 그러나 두 방법 모두 ill-posed problem 인 커널 예측 문제를 한 장의 이미지만으로 해결하려는 것이기 때문에 정확한 예측에는 어려움이 발생한다. 따라서 본 논문에서는 두 장의 이미지를 활용한 이미지 화질 저하 커널 예측 방법을 제안한다. 제안된 방법은 두 장의 이미지가 같은 카메라를 통해 촬영되었으며 이때 이미지 화질 저하는 카메라에 의해서만 영향을 받는다는 가정을 기반으로 한다. 즉, 두 장의 이미지는 같은 커널을 통해 저하된 이미지라는 가정을 한다. 제안된 방법은 [14]에서처럼 이미지 분포를 기반으로 한 커널 예측을 진행하며, 이미지 초해상도를 진행하고자 하는 이미지 외에 참고 이미지 또한 같은 커널에서 화질 저하를 시켰을 때 본래의 이미지와 같은 분포에 있도록 학습을 진행한다. 결과적으로 본 논문에서는 두 장의 이미지를 사용하였을 때 더욱 정확하게 커널을 찾을 수 있음을 보여준다. 두 장의 이미지를 활용하는 방식이 한 장의 이미지만을 활용하는 기존의 최고 수준의 방법에 비해 합성된 다양한 커널 데이터셋[14]에서 약 0.17dB 성능 향상이 있었다.
이미지는 해상도가 높을수록 이미지를 시청하는 사람들의 만족도가 높아지며 초고해상도 이미지화는 컴퓨터 비전이나 영상처리 분야 중에서도 연구 가치가 꽤 높아지고 있다. 본 연구에서는 주로 딥 러닝 초 해상도 모델을 사용하여 저해상도 이미지 LR의 주요 특징을 추출한다. 추출된 특징을 학습 및 재구성하고, 고해상도 이미지 HR을 생성하는 재구성 기반 알고리즘에 중점을 둔다. 본 논문에서는 재구성에 기반을 둔 초 해상도 알고리즘 모델에서 SRCNN과 VDSR에 대하여 알아보도록 한다. SRCNN과 VDSR모델의 구조 및 알고리즘 프로세스를 간략하게 소개하고 개선된 성능평가 함수에서도 다중 채널과 특수한 형태에 대하여 알아보도록 하며, 실험을 통하여 각 알고리즘의 성능을 이해하도록 한다. 실험에서는 SRCNN 및 VDSR 모델의 결과와 피크 신호 대 잡음 비 및 이미지 구조 유사도를 비교하는 실험을 수행하여 결과를 한눈에 볼 수 있도록 하였다.
문자 인식은 스마트 주차, text to speech 등 최근 다양한 플랫폼에서 필요로 하는 기술로써, 기존의 방법과 달리 새로운 시도를 통하여 그 성능을 향상시키려는 연구들이 진행되고 있다. 그러나 문자 인식에 사용되는 이미지의 품질이 낮을 경우, 문자 인식기 학습용 이미지와 테스트 이미지간에 해상도 차이가 발생하여 정확도가 떨어지는 문제가 발생된다. 이를 해결하기 위해 본 논문은 문자 인식 모델 성능이 다양한 품질 데이터에 대하여 강인하도록 이미지 초해상도 및 문자 인식을 결합한 통째학습 신경망을 설계하고, 대안적 통째학습 알고리즘을 구현하여 통째 신경망 학습을 수행하였다. 다양한 문자 이미지 중 차량 번호판 이미지를 이용하여 대안적 통째학습 및 인식 성능 테스트를 진행하였고, 이를 통해 제안하는 알고리즘의 효과를 검증하였다.
초해상화 기법은 저해상도 영상을 고해상도 영상으로 변환하는 기법이다. 최근에는 딥러닝 기술을 활용한 초해상화 방법이 주류를 이루고 있으며, 원격 탐사 분야에서도 이를 응용한 연구가 증가하고 있다. 본 연구에서는 위성 영상의 4배 해상도 향상을 위하여 deep back-projection network (DBPN) 네트워크에 기반한 초해상화 기법을 제안하였다. 또한, 복원된 영상의 디테일 및 윤곽선 부분에서의 고품질 영상 획득을 위해 윤곽선 손실 함수를 제안하고, 효과적이고 안정적인 학습을 위하여 Wasserstein distance 손실 함수를 사용한 GAN 기법을 적용하였다. 또한, 자연스러운 저해상도 훈련 영상을 획득하기 위한 detail preserving image downscaling (DPID) 기법을 적용하였다. 마지막으로 전정 영상의 특징을 추출하여 훈련의 마지막 단계에 적용 시킴으로써 출력 영상의 세부적인 특징을 효과적으로 생성하였다. 그 결과 실험에 사용된 WorldView-3 영상 및 KOMPSAT-2 영상에서 해상도 향상 효과를 확인하였고, 다른 초해상화 모델에 대비하여 윤곽선 보존력이나 영상의 선명도가 향상 되었음을 확인하였다
본 논문에서는 딥 콘볼루션 신경망 구조를 사용하여 학습된 초해상화 알고리즘을 GPU 프로그래밍을 통해 실시간 동작이 가능하도록 하는 방법을 제시하였다. 딥 러닝이 많이 대중화 되면서 많은 영상처리 알고리즘이 딥러닝을 기반으로 연구가 되었다. 하지만 계산 량이 많이 필요로 하는 딥 러닝 기반 알고리즘은 UHD 이상의 고해상도 영상처리에는 실시간 처리가 어려웠다. 이런 문제를 해결하기 위해서 고속 병렬 처리가 가능한 GPU 를 사용해서 2K 입력영상을 4K 출력 영상으로 확대하는 딥 초해상화 알고리즘을 30 fps 이상의 처리 속도로 동작이 가능하도록 구현을 하였다.
본 논문에서는 TMIV 부호화 과정에서 개선된 압축성능을 위해 딥러닝을 이용한 초해상화 기술을 적용하는 방식을 제안한다. 제안 방식에서는 TMIV 인코더에서 아틀라스 생성한 후, 해당 아틀라스의 패킹된 뷰들을 downsampling하여 뷰들이 축소된 아틀라스를 생성하는 방식을 사용한다. 생성된 아틀라스는 기존의 방식 그대로 VVC를 이용하여 부복호화를 한다. 복호화된 아틀라스를 렌더링을 위해 뷰로 만드는 과정 중에 딥러닝을 이용한 초해상화 기술을 적용하여 줄어든 뷰들을 원래의 크기로 복원시킨다. 제안 기술을 통해 복원된 뷰의 화질을 유지시킨 채 많은 비트율을 감소시킬 수 있음이 확인된다.
최근 자율주행에서 안전한 주행을 위해 영상 기반 다중객체 검출 기술이 활발히 연구되고 있다. 이때, 저해상도 영상은 객체 검출 단계에서 정확도가 떨어지는 한계가 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 초해상화와 객체 검출을 위한 방법을 함께 사용하는 기법을 제안한다. 더 나아가 초해상화 단계에서 하나의 구분자만 사용하는 기존의 방법과 다르게 이미지 생성 과정 중간에서 추가의 구분자를 사용하여 총 두 개의 구분자를 사용하여 성능을 향상하고자 하였다. 본 논문은 한국 고속도로 교통 데이터를 사용하여 실험하였으며, 그 결과 제안된 방법의 성능이 mAP@0.5 및 F1 점수 측면에서 기존 방법보다 우수하다는 것을 확인하였다.
FHD 이상을 넘어선 UHD급의 고해상도 동영상 콘텐츠의 수요 및 공급이 증가함에 따라 전반적인 산업 영역에서 네트워크 자원을 효율적으로 이용하여 동영상 콘텐츠를 제공하는 데에 관심을 두게 되었다. 기존 방법을 통한 bi-cubic, bi-linear interpolation 등의 방법은 딥 러닝 기반의 모델에 비교적 인풋 이미지의 특징을 잘 잡아내지 못하는 결과를 나타내었다. 딥 러닝 기반의 초 해상화 기술의 경우 기존 방법과 비교 시 연산을 위해 더 많은 자원을 필요로 하므로, 이러한 사용 조건에 따라 본 논문은 초 해상화가 가능한 딥 러닝 모델을 경량화 기법을 사용하여 기존에 사용된 모델보다 비교적 적은 자원을 효율적으로 사용할 수 있도록 연구 개발하는 데 목적을 두었다. 연구방법으로는 structure pruning을 이용하여 모델 자체의 구조를 경량화 하였고, 학습을 진행해야 하는 파라미터를 줄여 하드웨어 자원을 줄이는 연구를 진행했다. 또한, Residual Network의 개수를 줄여가며 PSNR, LPIPS, tOF등의 결과를 비교했다.
자동차 번호판 인식은 영상 내 검출한 차량의 번호판의 문자열을 인식하여 차량을 식별하고 추적하는 기술로 주변 환경에 의한 잡음, 왜곡과 차량의 움직임으로 발생한 흐림, 영상 입력 장치와의 물리적 거리 등에 강인해야 한다. 본 논문에서는 차량 움직임으로 발생한 흐림이 있는 저해상도 영상에 대한 번호판 인식 성능의 향상을 위해 디블러링 모델과 초해상화 모델을 이용한 영상 복원 방법을 제안한다. 실험을 통해 디블러링 모델과 초해상화 모델을 결합하여 흐림이 있는 저해상도 국내 번호판 영상에서의 인식 성능을 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.