• Title/Summary/Keyword: 초크랄스키 단결정 성장

Search Result 26, Processing Time 0.022 seconds

Distribution of Grown-in Defects in the Fast-pulled Czochralski-silicon Single Crystals (고속 인상 초크랄스키 실리콘 단결정에서 성장 결함 분포)

  • 박봉모;서경호;오현정;이홍우;유학도
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.84-92
    • /
    • 2003
  • The fast pulling is easy to modify the distribution of grown-in defects toward fine size, which can be readily removed by additional treatment. In this experiment, The fast pulled crystals with high pulling late over 1.0 mm/min were grown and their grown-in defect distributions were investigated. In our recent developments in the growth of Cz-Si, it could be found that the cooling rate in a specific temperature range and the uniformity of temperature gradient at solid/liquid interface are more important for the formation of grown-in defect than the pulling rate itself. We analyzed these cooling rates and temperature gradients for the various fast pulled crystals and compared them to the observed formation behavior of the grown-in defects. The effective factor (Ω) for the void defect formation was introduced and it could explain the radial distribution of void defects in the fast-pulled crystals effectively.

Measurement of the temperature and velocity fluctuations occurred by the baroclinic instability in the melt for Czochralski crystal growth method (초크랄스키 단결정 성장 멜트에서 baroclinic 불안정에 의해 발생하는 유동과 온도 변동의 측정)

  • 손승석;이경우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.381-388
    • /
    • 2000
  • The temperature and velocity fluctuations occurred by the baroclinic instability in the melt for Czochralski crystal growth method were experimentally investigated. Wood's metal, which has similar Pr number to the silicon melt, was used as the working fluid and azimuthal velocity was measured using incorporated magnet probe. The azimuthal velocities near the free surface are faster than velocities near the bottom and the rotational velocities near the model crystal become very fast. The results of measured temperature fluctuation as increasing rotation rate were shown that baroclinic instability occurred at the region of Ro<1.01, Ta>$9.63{\times}10^8$. In these region, the fluctuations of temperature and velocity have the same frequency.

  • PDF

A numerical study on the optimum operation condition for axial oxygen concentration in 8 inch silicon growth by cusp MCZ (8인치 실리콘성장을 위한 커스프 MCZ계에서 축방향 산소분포에 대한 연구)

  • 이승철;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.406-417
    • /
    • 1997
  • A numerical study was conducted on the optimum magnetic field intensity and asymmetric factor for uniform axial oxygen concentration in 8 inch silicon single crystal growing process by magnetic Czochralski method. For constant shape of cusp field, a change of coil and crucible position were compared. In case of symmetric cusp field, magnetic field intensity variation shows concave downward with crystal growing for uniform, axial oxygen concentration. A numerical results show similar value of standard deviation of average oxygen concentration for uniform oxygen concentration between coil and crucible position change. In case of asymmetric cusp field. asymmetric factor is increased with crystal growing to have uniform oxygen concentration.

  • PDF

Optimal Water-cooling Tube Design for both Defect Free Process Operation and Energy Minimization in Czochralski Process (무결정결함영역을 유지하면서 에너지를 절감하는 초크랄스키 실리콘 단결정 성장로 수냉관 최적 설계)

  • Chae, Kang Ho;Cho, Na Yeong;Cho, Min Je;Jung, Hyeon Jun;Jung, Jae Hak;Sung, Su Whan;Yook, Young Jin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.49-55
    • /
    • 2018
  • Recently solar cell industry needs the optimal design of Czochralski process for low cost high quality silicon mono crystalline ingot. Because market needs both high efficient solar cell and similar cost with multi-crystalline Si ingot. For cost reduction in Czochralski process, first of all energy reduction should be completed because Czochralski process is high energy consumption process. For this purpose we studied optimal water-cooling tube design and simultaneously we also check the quality of ingot with Von mises stress and V(pull speed of ingot)/G(temperature gradient to the crystallization) values. At this research we used $CG-Sim^{(R)}$ S/W package and finally we got improved water-cooling tube design than normally used process in present industry. The optimal water-cooling tube length should be 200mm. The result will be adopted at real industry.

Defect analysis of calcium fluoride single crystal substrates with (100) and (111) orientation ((100) 및 (111) 배향을 갖는 CaF2 단결정 기판의 결함 분석)

  • Ye-Jin Choi;Min-Gyu Kang;Gi-Uk Lee;Mi-Seon Park;Kwang-Hee Jung;Hea-Kyun Jung;Doo-Gun Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The CaF2 single crystal has notable characteristics such as a large band gap (12 eV), excellent transparency over a wide wavelength range, low refractive index and dispersion. Due to these outstanding properties, CaF2 single crystal has considered as a promising material for short-wavelength light sources in recent lithography processes. However, there is an inherent birefringence of the material at 157 nm and the resulting aberration can be compensated for through the combination of the (100) plane and the (111) plane. Therefore, it is necessary to investigate the characteristics according to the plane. In this study, we analyzed crystallinity, optical properties of commercial CaF2 single crystal wafers grown by the Czochralski method. In particular, through chemical etching under various conditions, it was confirmed that the shape of etch pits appears differently depending on the plane and the shape and array of specific etch pits affected by dislocations and defects were examined.

Effect of buoyancy and thermocapillarity on the melt motion and mass transfer for different aspect ratio of flow field in magnetic Czochralski crystal growth of silicon (Cusp 자장이 걸려있는 초크랄스키 실리콘 단결정성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질전달에 미치는 영향)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • The effect of the buyancy and thermocapillarity for differnent aspect ratio of flow field on melt motion and mass transfer has been numerically investigated in magnetic Czochralski crystal growth of silicon. During the process of crystal growth, the melt depth of crucible reduces so the aspect ratio of flow field also reduces. Therefore the shape of magnetic field of the flow field changes and the flow pattern also changes significantly. Together with the melt flow which forms the Marangoni convection (or thermocapillary flow) that comes from the inside the flow field, a flow circulation is observed near the corner close both to the crucible wall and the free surface. Due to this circulation, buoyancy effect has been turned out to be local rather than global. As the aspect ratio decreases, the radial component of the magnetic field prevails compared with the axial component in the flow field. Under the influence of this magnetic field, the melt flow and the temperature distribution in a meridional plane tend to depend on the radial position. As the aspect ratio decreases, the temperature gradient near the edge of the crystal decreases yielding smaller thermocapillarity, and the oxygen concentration near the crystal and the oxygen incorporation rate also decrease.

  • PDF