• Title/Summary/Keyword: 초조강 콘크리트

Search Result 10, Processing Time 0.022 seconds

Experimental study on the development of super high early strength concrete using C3S stimulating hardening accelerator (C3S 자극 경화촉진제를 사용한 초조강 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.266-267
    • /
    • 2014
  • In order to develop concrete generating compressive strength of 10MPa~15MPa aging for 6hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That's because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

A study on the Shrinkage Properties of precast concrete using Calcium hardening accelerator (칼슘계 경화촉진제를 사용한 프리캐스트 콘크리트의 수축특성에 관한 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.44-45
    • /
    • 2014
  • On this study, initial crack index was evaluated by performing FEM analysis to crack propagation from hydration heat for development of precast concrete. On the result, as increased the usage of hardening accelerator, initial compressive strength were improved and setting time also was shortened. Additionally, central temperature of concrete was increased, the reaching time for the highest temperature could be shortened. By the result to assess crack index, there was no problem about crack despite of growth of initial high hydration heating. This result guessed because of small size element when analyzed trough FEM, realization for mass concrete's crack index should be performed.

  • PDF

Evalution of Practial Application of high early Strength Concrete using Early strength type material (조강형 재료를 사용한 초조강 콘크리트의 적용성 평가)

  • Yang, Hoon;Park, Kyu-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.48-49
    • /
    • 2013
  • This test investigates early strength and durability of concrete using early strength type materials(cement, Polycarboxylate acid). The goal of this test is to secure the strength of 5.0 MPa in 12 hours early age and strength of 14 MPa for 24 hours correspondingly. This type of admixtures, concrete curing temperature, amount of binder and other concrete properties were confirmed by experimental factors. Comparing outcomes from two cases on using early strength type materials and common materials resulted in reducing of costs and shortening of the construction period, that determined the economical benefits of using early strength materials in construction.

  • PDF

Effect of Hardening Accelerators on the Adiabatic Temperature property Properties of Precast Concrete and FEM analysis for Evaluating the Crack Performance (경화촉진제를 사용한 프리캐스트 콘크리트의 단열온도특성 및 FEM해석에 의한 균열성능 평가에 관한 연구)

  • Min, Tae-Beom;Cho, In-Sung;Mun, Young-Bum;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, initial crack index was evaluated by FEM analysis to find the crack propagation from hydration heat in precast concrete. As results, as the usage of hardening accelerator increased, initial compressive strength increased and setting time was shortened. Additionally, as amounts of hardening accelerators increased, the central temperature of concrete increased and the time to reach the highest temperature was shortened. It was demonstrated that the hardening accelerators accelerated the hydration reaction of cement, and caused the increase of hydration heat within the short period of time. Furthermore, the crack index for evaluating the heat level was performed by FEM. As results, there was no problem about the cracks, despite of the growth of initial high hydration heat. This is because of the increased tensile strength that is large enough to sustain the thermally induced-stress.

A Study on the Bond Strength of Coated Rebar by Polymer Cement Slurry Made of EVA and Ultra High-Early Strength Cement (EVA와 초조강시멘트를 사용한 폴리머 시멘트 슬러리 도장철근의 부착강도에 관한 연구)

  • Hyung, Won-gil;Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.633-640
    • /
    • 2015
  • Polymer cement slurry (PCS) is made from organic polymer dispersion and cement has good adhesion to steel, waterproofness and acid resistance due to being of polymer films formed in cement slurry. The purpose of this study is to evaluate the bond strength of coated rebar by polymer cement slurry made of EVA and ultra high-early strength cement. The test pieces are prepared with EVA polymer dispersion and ultra high-early strength cement having four types of polymer-cement ratios, four types of coating thicknesses and four curing ages, and tested for the bond strength test. From the test results, in general, bond strength of PCS-coated rebar is better than that of uncoated rebar and epoxy-coated rebar. It is also high bond strength at curing ages of 7-day, and coating thicknesses of $75{\mu}m$ and $100{\mu}m$. The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and EVA at polymer-cement ratio of 80%, and coating thickness of $100{\mu}m$ is about 1.32 and 1.38 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is apparent that the curing age, coating thickness, type of polymer and cement are very important factors to improve the bond strength of PCS-coated rebar to cement concrete. We can have basic information that PCS-coated rebar with polymer-cement ratio of 80% or 100% and coating thickness of $100{\mu}m$ at curing age of 1-day can replace epoxy-coated rebar.

Fundamental Study on the Strength Development of Cement Paste using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 강도발현에 대한 기초적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.407-415
    • /
    • 2013
  • The purpose of this research is to verify the performance of hardening accelerator in cement paste through mechanical performance evaluation and micro structure analysis on hardening accelerator for development of super high early strength concrete. The research results showed that hardening accelerator produced $Ca(OH)_2$ when hydrated with cement, enhancing the degree of saturation of Ca ion by using differential thermal analysis. Moreover, porosity was reduced rapidly as capillary pores were filled by hydration products of $C_3S$. According to the experiment using hydration measurement testing, when 1% and 3% of accelerator were mixed, hydration rate increased toward the second peak point compared to high early strength cement, before the first peak point disappeared. It turned out that adding accelerator accelerated the hydration rate of cement, especially $C_3S$. The shape of C-S-H is shown depending on the amounts of accelerator added and the production and age of $Ca(OH)_2$ by using SEM to observes hydration products. Therefore, it's evident that hardening accelerator used in this research increases amounts of $Ca(OH)_2$ and accelerates $C_3S$, it is effective for the strength development on early age.

Mix Design Conditions at Early Curing Age of PCS-Coating Material Effected on Improvement in Bond Strength of Coated Rebar (도장철근의 부착강도 개선에 영향을 미치는 초기재령에서의 PCS 도장재 배합조건)

  • Jo, Young-Kug;Park, Dong-Yeol;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • Polymer cement slurry (PCS) made from organic polymer dispersion and cement has good adhesion to steel, waterproofness and acid resistance due to being of polymer films formed in cement slurry. The purpose of this study is to evaluate the mix design conditions at early curing age of PCS-coating material effected on improvement in bond strength of coated rebar. The test pieces are prepared with two types of polymer dispersions such as St/BA and EVA, four polymer-cement ratios, two types of cement, four coating thicknesses and three curing ages, and tested for the bond strength test. From the test results, in general, bond strength of PCS-coated rebar is better than that of uncoated rebar and epoxy-coated rebar. It is also high bond strength at curing ages of 7-day or less, and coating thicknesses of $75{\mu}m$ and $100{\mu}m$. The maximum bond strength of PCS-coated rebar at curing age of 3-hour is almost same as that of curing age of 1-day and 7-day. The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and St/BA at polymer-cement ratio of 80%, and coating thickness of $100{\mu}m$ is about 1.52 and 1.58 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is apparent that the curing age, coating thickness, type of polymer and cement are very important factors to improve the bond strength of PCS-coated rebar to cement concrete. We can have basic information that PCS-coated rebar with curing age at 3-hour and coating thickness of $100{\mu}m$ can replace epoxy-coated rebar.