• Title/Summary/Keyword: 초정밀 공작기계

Search Result 94, Processing Time 0.024 seconds

A Study on the Design and Control of a Ultra-precision Stage (초정밀 스테이지 설계 및 제어에 관한 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 2006
  • The ultra-precision stage is demanded for some industrial fields such as semiconductor lithography, ultra-precision machining, and fabrication of nano structure. A new stage was developed for those applications in order to obtain nano meter resolution. This stage consists of symmetric double parallelogram mechanism using flexure hinges. The mechanical properties such as strength of the flexures and deformations along the applied force were analyzed using FEM. The stage is actuated by a piezoelectric actuator and its movement was measured by a ultra-precision linear encoder. In order to improve positioning performance, a PID controller was designed based on the identified second order transfer function. Experimental results showed that this stage could be positioned within below 5 nm resolution irrespective of hysteresis and creep by the controller.

Ultra-precision Grinding Machining of Glass Rod Lens Core With Aspheric (비구면 Glass Rod 렌즈 금형의 초정밀 연삭가공)

  • Kim, Woo-Soon;Kim, Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2009
  • To obtain the surface roughness with nano order, we need a ultra-precision machine, cutting condition, and materials. In this paper, the cutting condition for getting nano order smooth surface of core have been examined experimentally by the ultra-precision machine and diamond wheels. The effects of the cutting velocity, the feed rate and depth of cut on the surface roughness were studied. And also, the surface roughness was measured by the Form Talysurf series PGI 840. The champion data of developed core was surface roughness Rmax 24.6nm, figure accuracy Rmax 68.9nm.

CNC Glass Scribing Machine 개발 : Free Curve Scribing 용

  • 편영식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.70-80
    • /
    • 1995
  • 광학용 정밀유리와 건축용 패널유리 전문가공을 위한 CNC Glass Scribing Machine 을 개발하였다. 이제까지는 고품질의 고가기계를 수입하여 사용하던가 간이 자동화된 자체 개발기계를 사용하여 여유있게 절단한후 연삭가공에서 정밀칫수를 맞추는 작업을 해왔었다. 그러나 금번 개발된 기계를 사용하여 작업한 결과 연삭공정을 생략할수 있음은 물론 가공칫 수 정밀도도 일급 수준을 얻을수 있었다. 그러나 아직 세계일류의 품질과 성능은 도달치 못 했다. 생산성 향상을 위한 이송속도 향상설계와 가공칫수 정밀도의 초일급 달성을 위한 초 정밀설계를 통해 품질과 성능에서 세계일류의 상품화 개발과정을 준비중에 있다. 본논문에 서는 본 기계의 개발과정 및 주요요소기술들과 개발 결과를 정리하였다.

  • PDF

Ultra Precision Lapping of Machinable Ceramic by In-process Electrolytic Dressing (연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 래핑 가공)

  • 이은상;원종구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In-process Electrolytic Dressing is a lapping method using electrolysis. This technology provides dressing to CIB-Diamond Lapping wheels during the lapping process for continuous protrude abrasive from super-abrasive wheels. so loading and glazing are disappeared apparently. Ultra-precision lapping of the machinable commies will be studied in the viewpoint of In-process Electrolytic Dressing. For ultra-precision lapping, need to develop an ultra-precision lapping system suitable metal bonded diamond wheel, and appropriate condition of u10a-precision lapping machining.

A Study on the Characteristics of Ultra-Precision Cutting for Al Alloy (Al합금의 초정밀 절삭특성 연구)

  • 김우순;김동현;난바의치
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.44-49
    • /
    • 2003
  • To obtain the surface roughness with range from 10nm to 1nm we need the study of ultra-precision machine, cutting condition, and materials. In this paper, the optimal cutting conditions for getting mirror surface of aluminum alloy have been examined experimentally by using ultra-precision turning machine and sing1e crystal diamond tool. In generally, the cutting conditions such as feed rate and depth of cut have effect on the surface roughness in ultra-precision turning. The result of surface roughness was measured by the ZYGO New View 200. Therefore, The surface roughness and cutting conditions has been clarified. The smooth surface of aluminum alloy less than 1nm RMS, 1nm Rmax can be obtained by the ultra-precision cutting.

A study on the Ultra-precision Inner Cutting of Al-alloy (알루미늄합금의 초정밀 내면절삭)

  • 김우순;강상도;김동현;난바의치
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.362-367
    • /
    • 2003
  • Recentlry, High accuracy and precision are required in various industrial field. To obtain the surface roughness with range from several 10nm to several nm in inner cutting, we need a ultra-precision machine, single diamond tool, cutting condition, and the study of materials. It is very difficult to obtain the mirror surface without new technique. In this paper, Using the new tool holder as well as the ultra precision diamond cutting, we directly processed the inside of an aluminum alloy in order to obtain mirror surface. We have considered the length of tool holder when we design the tool holder. From experimental results, we believe that the new tool holder will improve inner cutting.

  • PDF

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

A Study on the Ultra-Precision Turning of Al Alloy (Al합금의 초정밀 선삭가공)

  • 김우순;채왕석;김동현;난바의치
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.416-421
    • /
    • 2003
  • To obtain the surface roughness with range from l0nm to In n need a ultra-Precision machine, cutting condition and the study of materials. And n have to also consider the chip and vibration of diamond tool during processing. In this paper, the cutting conditions for getting mirror surface of aluminum alloy have been examined experimentally by using ultra-precision turning and single crystal diamond tool. In generally, the cutting conditions have effect on the surface roughness in ultra-precision turning. The result of surface roughness was measured by the ZYGO New View 200.

  • PDF

A Study on the Development of the Superprecision Nano Separator (초정밀 나노 분급기 개발에 관한 연구)

  • 성백섭;윤길하;차용훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.27-32
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to loam to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF

A Study on Ultraprecision Dicing Machining of Silicon Wafer (실리콘 웨이퍼의 초정밀 절단가공에 관한 연구)

  • 김성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.502-506
    • /
    • 1999
  • Recently, the miniature of electric products such as notebook, cellular-phone etc. is apparently appeared, due to the smaller size of the semiconductor chips. As the size of chip gets smaller, the circuit could be easily damaged by the slightest influence, so it is important to control the chipping generation in the process of dicing. This paper deals with chipping of the silicon wafer dicing. The relationships between the dicing force and the wafer chipping are investigated. It is confirmed that the wafer chipping increases as the dicing force increases.

  • PDF