• Title/Summary/Keyword: 초음파 에너지

Search Result 320, Processing Time 0.023 seconds

Polymerization of Polystyrene Latex using Ultrasound Energy Effect (초음파 에너지를 이용한 Polystyrene Latex의 중합 특성)

  • Kim, Hyung Jin;Kim, Won II;Lee, Seung Bum;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.886-892
    • /
    • 1997
  • There are many methods to synthesize polystyrene latex. Emulsion polymerization technique is commonly used commercially, but it requires a new technology to replace a traditional polymerization method because of the disadvantage of chemical initiator for environmental pollution. Since free radicals can be produced by ultrasound energy effect, polystyrene latex was synthesized using ultrasound energy instead of chemical initiator. As the ultrasonic irradiation time was increased, average molecular weight was increased and polydispersity was decreased. The degree of polymerization was increased with the concentration of SDS and maximum degree of polymerization was shown at 2wt.% SDS concentration and the reaction temperature of $40^{\circ}C$. During the course of polymerization, molecular weight was repeatedly fluctuated because of occurrence of depolymerization. Narrow molecular weight distribution polystyrene latex having controlled molecular weight was synthesized by controlling ultrasonic irradiation time and the concentration of SDS.

  • PDF

A Development of an Array Guided Wave Ultrasonic Testing System for pipe inspection (배관 진단을 위한 배열형 유도초음파 검사시스템 개발)

  • Cho, Hyun-Joon;Lee, Dong-Hoon;Kang, To;Park, Jin-Ho;Han, Seong-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.29-35
    • /
    • 2015
  • Pipes, commonly used in energy and petrochemical facilities, have various types of defects induced by diverse factors and this is often issued in NDE society. Ultrasonic guided wave inspection method are normally adopted to insure the healthiness of industry pipes. Recently, ultrasonic guided wave inspection is shifted to adopt arrayed probes and system. And here we developed an array guided wave ultrasonic testing system can adapt arrayed probes and focusing methods. In this paper, an array guided wave ultrasonic testing system is presented including a transmitting focusing technique and flaw signal level enhancement.

Optimization of Ultrasonic Soil Washing Processes Using Aluminum Foil Erosion Tests (알루미늄 호일 부식 실험을 이용한 초음파 토양 세척 공정 개발의 기초 연구)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • The physical effect induced by acoustic cavitation was investigated to accumulate basic data for the design of ultrasonic soil washing processes using aluminum foil erosion tests. A square aluminum foil was placed on the glass beads in the pyrex vessel submerged in the sonoreactor equipped with a 36 kHz ultrasound transducer module at the bottom. Cavitational erosion of foils was quantitatively analyzed for various glass bead diameter conditions (1, 2, and 4 mm), glass bead height conditions (5, 10, 15, and 20 mm), and water height conditions (5, 10, 15, and 20 mm). It was found that aluminum foil erosion significantly increased as the glass bead diameter increased and water height over the glass bead increased due to less attenuation of ultrasound and the optimization of sound field for cavitation. Moreover mechanical mixing was suggested to move constantly particles to the bottom area where the acoustic cavitation occurs most violently. It was because aluminium foil erosion by ultrasound transmitted through glass beads was relatively too weak.

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.

A study on the reliability enhancement of Ultrasonic water treatment system to boiler (보일러 초음파 수처리장치의 신뢰성향상에 관한 연구)

  • Kim, Dae-Ryong;Lee, Keun-Oh
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.287-293
    • /
    • 2013
  • This study was carried out to diminish the formation of scale in boilers which is one of the defect elements when they are operating. The defect relating to scale can cause a fatal impact on the explosion of boilers due to the overheating of their tubes, or it can affect the flow of water inside boilers with its bad circulation and result in a disparity of water inside the equipment. Heat transfer in the scale is low comparing to the boiler material, so it can lead to energy losses and has also impact on the global warming. In 2005, the Korean government introduced a system which requires boiler users to install the equipment which can prevent or eliminate the formation of scale to improve the management of water quality in boilers. The study on the techniques for preventing or eliminating the formation of scale started in 1821 and since then subsequently there have been lots of similar studies. The first one was about the scale reduction using potato starch. Since an ultrasonic scale preventer developed by a scientist from a Russian acoustic institute was introduced in1993, a variety of equipment of this kind have been disseminated in Korea. There has been a need to demonstrate the condition for the best performances of such equipment. Boilers are mostly composed of the main body and 288 the tube with a circular curved surface. I carried out a demonstration study on a circular tube which affects the scale defect the most among the boiler components. As a result of it, I found out the fact that the ultrasonic wave needs to reach a certain level of sound pressure and frequency to affect the formation of scale.

Speech synthesis using acoustic Doppler signal (초음파 도플러 신호를 이용한 음성 합성)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • In this paper, a method synthesizing speech signal using the 40 kHz ultrasonic signals reflected from the articulatory muscles was introduced and performance was evaluated. When the ultrasound signals are radiated to articulating face, the Doppler effects caused by movements of lips, jaw, and chin observed. The signals that have different frequencies from that of the transmitted signals are found in the received signals. These ADS (Acoustic-Doppler Signals) were used for estimating of the speech parameters in this study. Prior to synthesizing speech signal, a quantitative correlation analysis between ADS and speech signals was carried out on each frequency bin. According to the results, the feasibility of the ADS-based speech synthesis was validated. ADS-to-speech transformation was achieved by the joint Gaussian mixture model-based conversion rules. The experimental results from the 5 subjects showed that filter bank energy and LPC (Linear Predictive Coefficient) cepstrum coefficients are the optimal features for ADS, and speech, respectively. In the subjective evaluation where synthesized speech signals were obtained using the excitation sources extracted from original speech signals, it was confirmed that the ADS-to-speech conversion method yielded 72.2 % average recognition rates.

Multimedia Extension Instructions and Optimal Many-core Processor Architecture Exploration for Portable Ultrasonic Image Processing (휴대용 초음파 영상처리를 위한 멀티미디어 확장 명령어 및 최적의 매니코어 프로세서 구조 탐색)

  • Kang, Sung-Mo;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.1-10
    • /
    • 2012
  • This paper proposes design space exploration methodology of many-core processors including multimedia specific instructions to support high-performance and low power ultrasound imaging for portable devices. To explore the impact of multimedia instructions, we compare programs using multimedia instructions and baseline programs with a same many-core processor in terms of execution time, energy efficiency, and area efficiency. Experimental results using a $256{\times}256$ ultrasound image indicate that programs using multimedia instructions achieve 3.16 times of execution time, 8.13 times of energy efficiency, and 3.16 times of area efficiency over the baseline programs, respectively. Likewise, programs using multimedia instructions outperform the baseline programs using a $240{\times}320$ image (2.16 times of execution time, 4.04 times of energy efficiency, 2.16 times of area efficiency) as well as using a $240{\times}400$ image (2.25 times of execution time, 4.34 times of energy efficiency, 2.25 times of area efficiency). In addition, we explore optimal PE architecture of many-core processors including multimedia instructions by varying the number of PEs and memory size.

Development of a cylindrical ultrasound applicator for Intracavitary Hyperthermia (강내온열 치료를 위한 원통형 초음파 치료기 개발)

  • Lee, Rena J.;Hyunsuk Suh
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • In this study, a cylindrical ultrasound applicator is developed for the treatment of vagina and rectum in combination with high dose rate brachytherapy. A cylindrical transducer (PZT-8, 1=1.5 cm, thickness=1.5mm OD=2.5 cm) was used as an energy source for induction of hyperthermia. Three single-element applicators were constructed to examine the performance of the PZT material. Vector impedance was measured to determine driving frequency. The efficiencies of the elements were determined using a radiation force technique to evaluate the feasibility of using the applicator as a hyperthermia source. A multi-element ultrasound applicator was designed using the PZT-8 material for the treatment of vagina. Results from the vector impedance measurements showed maximum magnitude at 1.78, 1.77, and 1.77 MHz for applicator 1,2, and 3, respectively. The radiation force measurements showed that the acoustic power of 40 watts was obtained in all three elements. The average efficiencies of the elements were 61.4, 65.2, and 54.0% for element 1, 2, and 3, respectively. The designed ultrasound hyperthermia applicator could be used in combination with high dose rate brachytherapy for the treatment of vagina and rectum. The use of this applicator with intracavitary brachytherapy could offer improved tumor control by increasing radiosensitiyity of the tumor.

  • PDF

The Study of Micro Crack Detection in Dissimilar Metal Weld Using a Variable Ultrasound Infrared Thermography (가변초음파 적외선열화상을 이용한 이종접합용접부의 미세균열 검출 연구)

  • Park, Jeong-Hak;Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • As a nondestructive inspection technology currently in use, infrared thermography has gradually expanded its application range to industry. The method detects only defect areas by grafting ultrasound on a technique of detecting infrared energy emitted from all objects with absolute temperature of 0 K and converting this energy into thermography for inspection. Ultrasound infrared thermography has merits including the ability to inspect a wide area in a short time without contacting the target object. This study investigated the applicability of the technique for defect detection using variable ultrasound excitation inspection methods on samples of Terfenol-D, a magnetostrictive material with a tunable natural resonant frequency.

LED Driving Circuit Design of Ultrasonic Speaker System for Sign Board (싸인 보드용 초음파 스피커 상태표시를 위한 LED 구동 회로의 설계)

  • Lee, Kyung-Ryang;Yeo, Sung-Dae;Jang, Young-Jin;Cha, Jae-Sang;Kim, Jin-Tae;Shin, Jae-Kwon;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.17-20
    • /
    • 2013
  • In this study, we introduce an LED Driving circuit in order that the information state can indicate audio signal gain and radiate pattern of ultrasonic speaker system for a sign board. Ultrasonic speaker system decreases energy loss and transmits the sound farther. Ultrasonic speaker having such characteristics is useful in that it can be widely used in daily life. Additionally, Proposed LED circuit indicates the information state as linear LED brightness taken from interface of ultrasonic speaker system. Designed circuit is confirmed through $0.35{\mu}m$ CMOS process by Dong-bu.