• Title/Summary/Keyword: 초음파 비선형 파라미터

Search Result 31, Processing Time 0.03 seconds

Acoustic Nonlinear Characteristics of Ultrasonic Wave Reflected at Contact Interfaces (접촉계면 반사 초음파의 음향 비선형 특성)

  • Park, Byung-Jun;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • In the field application of the conventional acoustic nonlinear technique using through transmission of bulk waves to evaluate the contact acoustic nonlinearity(CAN) in solid-solid contact interfaces like as in the closed crack, it has difficulty to access inner position for attaching the pulsing or receiving transducer. In the present study, a new reflection technique has been suggested to measure the acoustic nonlinearity in solid-solid contact interfaces, which uses both of pulsing and receiving transducers on the same side of target and so that it will be very useful for the field application. For this, based on the linear and the nonlinear contact stiffness estimated by the power-model of the contacting pressure, the nonlinear parameter of the reflected ultrasonic wave at the interfaces has been theoretically calculated. Experimental results in contact interfaces of A1606l-T6 alloy specimens with loading pressure showed good agreement with the theoretical predictions, which proves the validity of the suggested reflection mode technique.

Design of Micro-meter Position Driver for X-Y Stage Using Linear Ultrasonic Motor (리니어 초음파 모터를 이용한 X-Y stage의 마이크로 미터급 위치 구동회로 설계)

  • Kim, Jeong-Do;Hong, Chul-Ho;Kim, Dong-Jin;Ham, Yu-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.165-171
    • /
    • 2005
  • The ultrasonic piezo motor is a new type motor that has an excellent performance and many useful features that electromagnetic motors do not have. But, it suffers from severe system non-linearities and parameter variations especially during speed control. Therefore, it is difficult to accomplish satisfactory control performance by using the conventional PID controller. In this paper, to achieve the precise control for linear type ultrasonic motor was analyzed as a function of response time and change with a driving time. Also, we propose controller that combines STEP controller and PD controller that have error of ${\mu}m$ about liner type ultrasonic motor.

  • PDF

Study on the Nonlinear Electromagnetic Acoustic Resonance Method for the Evaluation of Hidden Damage in a Metallic Material (금속 재료의 잠닉손상 평가를 위한 비선형 전자기음향공진 기법에 관한 연구)

  • Cho, Seung-Wan;Cho, Seung-Hyun;Park, Choon-Su;Seo, Dae-Cheol;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.277-282
    • /
    • 2014
  • Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested with a shear wave EMAT. The hysteretic nonlinear parameter ${\alpha}$, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.

Development of Medical Ultrasound Imaging Techniques for Tissue Characterization (Attenuation Effect on Measurement and Tomography of Nonlinear Parameter) (조직 정량화를 위한 의용 초음파 영상 기술 개발(비선형 파라미터의 측정 및 단층영상에 미치는 감쇠의 영향))

  • 이현주;이강호;최종호;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1916-1924
    • /
    • 1990
  • In this paper attenuation effect on the measurement and the tomography of nonlinear parameter is discussed. We perform computer simulation with the method using harmonic components and the method using secondary wave components, and then estimate attenuation effect through the results and compare two measurement techniques. According to simulation result the attenuation effect is more intensive as large n and \ulcorner, and the degree of the attenuation effect is represented as error functions. In the aspect of measuremnet techniques, the method using secondary wave components is more insensitive to attenuation effect than the method using harmonic compnents. We obtain the same result in the nonlinear tomography, and show that the attenuation compensive filter is required because the whole tomogram is affected by frequency dependent attenuation(or nonlinear attenuation)

  • PDF

An Optimization Approach for Localization of an Indoor Mobile Robot (최적화 기법을 사용한 실내 이동 로봇의 위치 인식)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This paper proposes a method that utilizes optimization approach for localization of an indoor mobile robot. Bayesian filters which have been widely used for localization of a mobile robot use many control parameters to take the uncertainties in measurement and environment into account. The estimation performance depends on the selection of these parameter values. Also, the performance of the Bayesian filters deteriorate as the non-linearity of the motion and measurement increases. On the other hand, the optimization approach uses fewer control parameters and is less influenced by the non-linearity than the Bayesian methods. This paper compares the localization performance of the proposed method with the performance of the extended Kalman filter to verify the feasibility of the proposed method. Measurements of ranges from beacons of ultrasonic satellite to the robot are used for localization. Mahalanobis distance is used for detection and rejection of outlier in the measurements. The optimization method sets performance index as a function of the measured range values, and finds the optimized estimation of the location through iteration. The method can improve the localization performance and reduce the computation time in corporation with Bayesian filter which provides proper initial location for the iteration.

A Study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ultrasonic Techniques (초음파법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.78-83
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this study the four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method at $630^{\circ}C$. Ultrasonic tests, tensile tests, $K_{IC}$ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter of the signal is sensitive and will be a good parameter to evaluate the material degradation.

  • PDF

Algorithms for Ultrasound Elasticity Imaging (초음파 탄성 영상 알고리듬)

  • Kwon, Sung-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.484-493
    • /
    • 2012
  • Since the 1980s, there have been many research activities devoted to quantitatively characterizing and imaging human tissues based on sound speed, attenuation coefficient, density, nonlinear B/A parameter, etc., but those efforts have not yet reached the stage of commercialization. However, a new imaging technology termed elastography, which was proposed in the early 1980s, has recently been implemented in commercial clinical ultrasound scanners, and is now being used to diagnose prostates, breasts, thyroids, livers, blood vessels, etc., more quantitatively as a complementary adjunct modality to the conventional B-mode imaging. The purpose of this article is to introduce and review various elastographic algorithms for use in quasistatic or static compression type elasticity imaging modes. Most of the algorithms are based on the crosscorrelation or autocorrelation function methods, and the fundamental difference is that the time shift is estimated by changing the lag variable in the former, while it is directly obtained from the phase shift at a fixed lag in the latter.

Ultrasonic Nondestructive Evaluation of Creep-Induced Cavities (크리프 기공의 초음파 비파괴평가에 관한 연구)

  • Jang, Young-Su;Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.110-117
    • /
    • 1999
  • In order to ultrasonically evaluate creep cavities pure copper samples were subjected to creep test and their microstructures were examined. Ultrasonic velocities. frequency-dependent magnitude spectra and attenuations were measured on a series of copper samples obtained from the different stages of creep test. Velocities measured in three directions with respect to the loading axis decreased and their anisotropy increased as a function of the creep-induced porosity. The anisotropic behavior could be attributed to the progressive change of pore shape and preferred orientation as the creep advanced. The 2% porosity by volume decreased the longitudinal and shear wave velocities by 11% and 4%, respectively. Furthermore, both velocities decreased nonlinearly with the porosity. As the creep damage developed, the magnitude spectra lost high frequency components and their central frequencies shifted to lower values. The attenuation showed almost linear behavior in the frequency range used. Normalized velocity, central frequency shift and attenuation slope were selected as nondestructive evaluation parameters. These results were presented and showed good relations with the porosity content.

  • PDF

Characterization of Low-cycle Fatigue of Copper and Isothermal Aging of 2.25Cr Ferritic Steel by Ultrasonic Nonlinearity Parameter (초음파 비선형파라미터를 이용한 무산소동 저주기피로와 2.25Cr 페라이트강의 등온열화 평가)

  • Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.239-245
    • /
    • 2022
  • The purpose of this study is to evaluate the degree of microstructural change of materials using ultrasonic nonlinear parameters. For microstructure change, isothermal heat-treated ferritic 2.25Cr steel and low-cycle fatigue-damage copper alloy were prepared. The variation in ultrasonic nonlinearity was analyzed and evaluated through changes in hardness, ductile-brittle transition temperature, electron microscopy, and X-ray diffraction tests. Ultrasonic nonlinearity of 2.25Cr steel increased rapidly during the first 1,000 hours of deterioration and then gradually increased thereafter. The variation in non-linear parameters was shown to be coarsening of carbides and an increase in the volume fraction of stable M6C carbides during heat treatment. Due to the low-cycle fatigue deformation of oxygen-free copper, the dislocation that causes lattice deformation developed in the material, distorting the propagating ultrasonic waves, and causing an increase in the ultrasonic nonlinear parameters.

A Study on the Evaluation of Material Degradation of 1Cr-lMo-0.25V Steel using Ultrasonic Techniques (초음파법을 이용한 1Cr-lMo-0.25V강의 열화도 평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2116-2124
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this studdy the four classes of the thermally aged 1Cr-lMo-0.25V specimens were prepared using an artificially accelerated aging method at 630$\^{C}$. Ultrasonic tests, tensile tests, K$\_$IC/ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter derived from the harmonic generation level is sensitive and will be a good parameter to evaluate the material degradation.