• Title/Summary/Keyword: 초음파 가공

Search Result 234, Processing Time 0.024 seconds

Micro Ultrasonic Elliptical Vibration Cutting (I) The Generation of a Elliptical Vibration Cutting Motion for Micro Ultrasonic Machining (미세 초음파 타원궤적 진동절삭 (I) 미세 초음파 가공을 위한 타원 절삭경로 생성)

  • Loh Byung-Gook;Kim Gi Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.190-197
    • /
    • 2005
  • For precise micro-grooving and surface machining, a mechanism for creating elliptical vibration cutting (EVC) motion is proposed which uses two parallel piezoelectric actuators. And based on its kinematical analysis, variations of EVC path are investigated as a function of dimensional changes in the mechanism, phase difference and amplitude of excitation sinusoidal voltages. Using the proposed PZT mechanism, various types of two dimensional EVC paths including one dimensional vibration cutting path along the cutting direction and thrust direction can be easily obtained by changing the phase lag, the amplitude of the piezoelectric actuators, and the dimension of the mechanism.

Micro V-groove Machining Using Cyclic Elliptical Cutting Motion of a Couple of Piezoelectric Material (압전소자의 미세회전운동을 이용한 초음파 미세 홈 가공)

  • Kim G.D.;Hwang K.S.;Loh B.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.625-628
    • /
    • 2005
  • For precise micro-grooving and surface machining, ultrasonic cyclic elliptical cutting is proposed using two parallel piezoelectric actuators. The piezoelectric actuators are energized by sinusoidal voltages of varying phase which is essenstial to generating elliptical cutting. Experimental setup is composed of ultrasonic motor, single crystal diamond cutting tool, and precise motorized xyz stage. It is confirmed experimentally that the cutting performance, in terms of the cutting force, the burr formation, and the discontinuous chip formation is improved remarkably by applying ultrasonic elliptical vibration cutting.

  • PDF

A Study for Tubing Pipe Flaw Sizing by Using Guided Ultrasonic Wave (유도초음파기법을 이용한 튜빙 결함측정에 관한 연구)

  • Joo, Kyung Mun;Cheon, Keun Young;Lee, Jeong Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2009
  • There is extensive tubing pipe in the nuclear power plant under high temperature and pressure. Erosion and corrosion defects are expected on this tubing pipe due to environmental and mechanical factors. In this study, Guided Ultrasonic Wave technique was applied to detect defects. The technique explores the advantages of the Guided Ultrasonic Wave method that inspects along the wall of the pipe and can travel long distances, providing rapid collection of data. This paper presents a case study of the Guided Ultrasonic Wave testing of 3/8" tubing pipe. This study offers to understand detected signals through correlation between amplitude and depth of defects.

  • PDF

Design of Ultrasonic Vibration Tool Horn for Micromachining Using FEM (유한요소법을 이용한 초음파 진동 공구혼 설계에 관한 연구)

  • Lee, Bong-Gu;Kim, Kwang-Lae;Kim, Kang-Eun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.63-70
    • /
    • 2008
  • Conical horn is used in many high frequency ultrasonic horns, to achieve a longitudinal vibration mode across a wide ultrasonic tool horn output surface. Modal analysis is method for designing tuned ultrasonic tool horn and for the prediction natural frequency of ultrasonic tool horn vibration mode. The design of ultrasonic horn is based on prototype estimate obtained by FEM analysis. The FEM simulated ultrasonic tool horn is built and characterized experimentally through laser vibrometer and electrical impedance analysis. In this paper, FEM analysis is developed to predict the natural frequency of ultrasonic tool horn and use of in the optimal design of ultrasonic horn shape.

One-wavelength Ultrasonic Horn Design for Ultrasonic Machining of Mobile Phone Battery Terminal Welding (휴대폰 배터리 단자접합 초음파 가공을 위한 한파장 혼 설계)

  • Seo, Jeong-Seok;Jang, Sung-Min;Beck, Si-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.70-75
    • /
    • 2012
  • The technique with ultrasonic vibration refers to the many industries. Especially Ultrasonic Connection Method is widely used for mobile battery, secondary battery, automobile components and also they recently started using it for terminal connecting of solar community battery. In this study, ultrasonic welding horn is analysed and designed with FEM, then manufactured based on it. Resonance frequency and amplitude of horn would be measured and compared with the designing result to judge the suitability. Al/Al specimen is welded by the manufactured horn and verify its performance via the weldability evaluation.

Development of Ultrasonic Machine with Force Controlled Position Servo System (가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발)

  • 장인배;이승범;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • S. K. Oh;D. J. Kim;S. D. Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.34-34
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

A Study on the Relationship between Dissimilar Metals Friction Welded Joints Strength Properties and Ultrasonic Reflection Coefficients (이종재 마찰용접부 강도특성과 초음파 반사계수와의 상관성에 관한 연구)

  • O, Se-Gyu;Kim, Dong-Jo;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.80-85
    • /
    • 1987
  • Friction welding has emerged as a reliable process for high-production commercial application with significant economic and technical advantages. But nondestructive test in friction weld was not clearly developed. Therefore the experimental verification is necessary in order to understand the characteristics of the pulse echo effects according to various change in welding conditions. This paper presents a new attempt to detect the bond strength of friction welds by ultrasonic. Instead of looking for a flaw or cracks at the interface, the new approach evaluates the coefficient by reflection which provides a single quantitative indicator involving the acoustic energy reflected at the interface. The objective of this study is to find the relationship between the reflection coefficients and the weld strength. Results of the bar-to-bar friction welding of aluminum to copper and stainless steel and such relationship investigation are presented and interpreted.

  • PDF

Detection of Cracks in feeder Pipes of Pressurized Heavy Water Reactor Using an EMAT Torsional Guided Wave (EMAT의 유도초음파 비틀림 모드를 이용한 가압중수로 피더관의 균열 검출)

  • Cheong, Yong-Moo;Kim, Sang-Soo;Lee, Dong-Hoon;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2004
  • A torsional guided wave mode was applied to detect a crack in a pipe. An array of electromagnetic acoustic transduce. (EMAT that can generate and receive torsional guided ultrasound with the frequency of 200kHz was designed and fabricated for testing a pipe of 2.5 inch diameter Artificial notches with various depths were fabricated in a bent feeder pipe mock-up and the detectability was examined from the distance of 2m of the specimen. The axial notches with the depth of 5% of wall thickness were successfully detected by a torsional mode (T(0,1)) generated by the EMAT However, it was found that the depth of defects was not related to the signal amplitude.

Evaluation of Plastic Anisotropy in the Steel Sheets Using EMAT (EMAT를 이용한 판재의 소성이방성 평가)

  • Ahn, B.Y.;Kim, Y.G.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 1997
  • Plastic anisotropy is one of important factors which determine the drawability of a steel sheet. It has been mainly measured by mechanical tensile test. From the ultrasonic velocities propagating along the relative directions to the rolling direction, CODF(crystallite orientation distribution function) can be measured and ODC's(orientation distribution coefficients) has some correlations with the plastic anisotropy. In this study the correlations between the plastic anisotropy and ODC's of the cold rolled steel sheet were measured. From the results of ultrasonic velocity measurements the average normal anisotropy, $\bar{\gamma}$ and the average planar anisotropy, ${\Delta}r$ could be predicted within the accuracy of ${\pm}0.082$ and ${\pm}0.096$, respectively. Acoustic resonance method was applied to measure the ultrasonic velocities and EMAT's were used for generating and detecting the ultrasonic waves.

  • PDF