• Title/Summary/Keyword: 초음파시험

Search Result 549, Processing Time 0.027 seconds

Intercomparisonn of Techniques for Pressure Tube Inspection of Pressurized heavy Water Reactor (가압 중수로형 원자력발전소 압력관 비파괴검사기술의 상호비교)

  • Lee, Hee-Jong;Kim, Yong-Si;Yoon, Byung-Sik;Lee, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.294-303
    • /
    • 2005
  • This paper describes the analysis results of a series f Round-Robin test that was performed to intercompare inspection and diagnosis techniques for characterization of pressure tube f a pressurized heavy water reactor under the Coordinated Research Project(CRP) of IAEA's nuclear Power Programme. For this test, six nations, Korea, Canada, India, Argentina, Rumania, and China that currently have pressurized heavy water reactors under operation involved, and the "KOR-1" pressure tube sample prepared by Korea was used. Two kinds of NDE technique, ultrasonic and eddy current test, were applied for these tests. The "KOR-1" pressure tube sample contains total 12 artificial flaws such as crack-like EDM notches, wear that is similar to the real flaws and can be produced on the pressure tubes during plant operation. Test results showed that seven laboratories from six nations detected all twelve flaws in "KOR-1" specimen by using ultrasonic and eddy current test methods, and ultrasonic test method was more accurate than eddy current test method in flaw detectin and sizing. ID flaws in pressure tube sample were more easily detected and accurately sized than OD flaws.

Engineering Properties of Red Shale and Black Shale of the Daegu Area, Korea (대구지역 적색 셰일과 흑색 셰일의 공학적 특성)

  • Kwag, Seong-Min;Jung, Yong-Wook;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.341-352
    • /
    • 2013
  • The physical and mechanical properties of red shale and black shale exposed in the Daegu area were investigated in tests conducted to determine unit weight, absorption ratio, porosity, ultrasonic velocity, unconfined compressive strength, point load strength, slake durability index, and deterioration characteristics. XRD, XRF, and SEM analyses were also performed on the shale specimens. While the unit weights of the two shales were similar, the absorption ratio and porosity were higher in the red shale than in the black shale. Despite the higher porosity of the red shale, the ultrasonic velocity, compressive strength, and point load strength were higher in the red shale, which is an unexpected result that may be due to the presence of fine laminations in the black shale. The deterioration rate, as determined from the point load strength and the slake durability index, increased with increasing immersion time and with the acidity of the immersion liquid. The deterioration rate was higher for the red shale than for the black shale because of the higher porosity of the former.

Anisotropy of Softwood Structural Lumber Using The Elastic Modulus Determined by The Ultrasonic Nondestructive Method (초음파 비파괴 시험법을 이용한 탄성계수의 산정을 통한 침엽수 구조용재의 이방성에 관한 기초연구)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • The aim of this paper is to present the modulus of elasticity of $E_L$, $E_R$, $E_T$ along three principal axis of softwood dimension lumber by nondestructive method. Ultrasonic measurement was carried out on defect free wood samples taken by the Japanese Larch, SPF (spruce-pine-fir) and Hem-fir $2{\times}4s$. The ultrasound velocities were measured to calculate young's moduli and it was derived elastic constants for each wood samples using the ultrasound velocities and densities of wood. From the test, $E_L$ was much greater than $E_R$ and $E_T$. $E_R/E_T$ ratios were about 1.3. The high density wood had high young's moduli in three principal axis and the difference in young's moduli between species was greater in transverse direction than longitudinal direction. The anisotropy of the lumber was presented through the calculated elastic moduli and compliances matrix in diagonal term were determined by inverting the stiffness matrix.

Standardization of Estimation Function of Concrete Compressive Strength with Non-Destructive Test Using Andesite Aggregates (안산암골재를 사용한 콘크리트 구조물의 비파괴 압축강도 추정)

  • Chung, Lan;No, Yun-Ki;Park, Hyun-Soo;Roh, Young-Sook;Min, Kyung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The purpose of this research is to obtain a practical expression for the estimation of compressive strength of concrete using non-destructive testing method such as rebound Schmidt hammer and ultrasonic pulse

Development and Characterization of Ultrasonic transducers for High Temperature Contact Measurement (고온 접촉식 탐상용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok;Yoon, Nam-Won;Yoon, Dong-Jin;Ahn, Yoon-Kook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • Piezoelectric ultrasonic transducers for high temperature contact measurement were developed. These high temperature ultrasonic transducers (HTUT) consisted of bismuth titanate piezoceramic element whose Curie temperature is higher than $600^{\circ}C$, a backing material of the mixture of tungsten powder and inorganic binder, an inner alumina tube, a wear Plate and a housing. The operational frequencies or the HTUT were 1.04 and 2.08 MHz, respectively. Various commercially available couplants for high temperature were evaluated and compared. As a couplant for high temperature ultrasonic testing between HTUT and test specimen, gold epoxy was selected. The peak amplitude of pulse-echo signals from steel test specimen decreased with increasing temperature. The operational temperature of the HTUT reached up to $500^{\circ}C$ at which the continuous contact measurement was possible.

Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy (초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가)

  • Miyasaka, Chiaki;Park, Ik-Keun;Park, Tae-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

Change in Ultrasonic Characteristics with Isothermal Heat Treatment of 2.25Cr-1Mo Steel (등온열처리에 따른 2.25Cr-1Mo강의 초음파 특성 변화)

  • Nam, Young-Hyun;Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.353-358
    • /
    • 2013
  • The ultrasonic characteristics of 2.25Cr-1Mo steel were investigated in relation to the isothermal heat treatment temperature and time. Charpy impact tests and hardness tests were conducted on individual specimens with three different heat treatment conditions. A pulse-echo method with longitudinal waves was used to measure the attenuation and velocity of ultrasonic waves. The FATT (fracture appearance transition temperature) increased with an increase in the isothermal heat treatment time, which implies that the toughness decreased. As the isothermal heat treatment time and temperature increased, the longitudinal wave velocity and ultrasonic attenuation coefficient were raised.

Degradation Assessment of Aluminum Alloy 6061-T6 Using Ultrasonic Attenuation Measurements (초음파 감쇠 측정을 이용한 Al6061-T6 열화 평가)

  • Kim, Hun-Hee;Kang, To;Seo, Mu-Kyung;Song, Sung-Jin;Kim, Hak-Joon;Kim, Kyung-Cho;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • Ultrasonic methods are widely used to degradation assessment. Remaining-life cycle of metal can be estimated by ultrasonic parameters because ultrasonic velocity and attenuation are affected by change of material properties with accumulated fatigue in the metal. Therefore, in this study, we will estimate overall change of material properties by 2D C-scan image. Fatigued aluminum alloy 6061-T6 samples from 0 to 85% were prepared for evaluating fatigue life cycle. Also, degraded image of materials using attenuation is proposed to estimate degree of material degradation for determining degraded area of fatigued samples. Finally, we will predicts process pf degradation with measured attenuation of fatigued aluminum alloy 6061-T6 samples.

Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Viewing of Reactor Internals in Sodium-Cooled Fast Reactor (소듐냉각고속로 원자로 내부구조물의 소듐내부가시화를 위한 웨이브가이드 초음파센서의 적용 가능성 연구)

  • Joo, Young-Sang;Lim, Sa-Hoe;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.364-371
    • /
    • 2008
  • Ultrasonic waveguide sensor has been developed for under-sodium viewing of reactor internal structures of a sodium-cooled fast reactor (SFR). The structure design concept of a waveguide sensor assembly was suggested and evaluated for the application in SFR. A 10 m long ultrasonic waveguide sensor assembly has been manufactured and the experimental feasibility tests were carried out. The 10 m long distance propagation performance of zero-order antisymmetric $A_0$ Lamb wave has been verified. The feasibility of ultrasonic waveguide sensor has been demonstrated by the C-scanning resolution performance test.

초음파 Fractography에 의한 파괴속도의 정밀측정을 위한 최적주파수 선정에 관한 연구

  • 한응교;이범성;고교청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.119-126
    • /
    • 2001
  • 유리와 같이 취성이 큰 재료의 파단면을 주의하여보면 반원형의 곡선이 이따금씩 여러개 나타나 있는 것을 볼 수 있다. 이것은 진행 중에 있는 균열이 어떠한 부분으로부터 나온 음파(횡파)와 만났을 때 일어나는 흔적으로 Wallner선 이라고 한다. 초음파 Fractography는 파괴 시험시 강력한 초음파를 사용하여 파단면에 이와 같은 Wallner 선을 인공적으로 발생시켜, 파면해석을 통하여 파괴속도등 파괴연구에 필요한 정보를 얻는 수법이다. 이 수법은 유리와 같은 비정질 탄성태의 파괴속도 측정을 위해 Kerkhof에 의해 최초로 고안되었으며, 수지와 같은 점탄성재료에 대해서는 Takahashi에 의하여 PMMA(Polymethy1 Methacrylate)재에 강력한 초음파를 사용하여 그 가능성이 제기된 이후 PMMA와 EPOXY재등의 점탄성재료의 파괴속도측정과 파괴강성등의 측정에 본격적으로 연구되기 시작하였다.