• Title/Summary/Keyword: 초음속 무딘 물체

Search Result 3, Processing Time 0.018 seconds

Analysis and Design Spike-Nosed Configurations in Supersonic Flow (초음속 유동장 Blunt-spike 선두 형상 설계 및 해석)

  • Gang, Hong-Jae;O, Seong-Won;Choe, Han-Ul;Hwang, Je-Yeong;Son, Chan-Gyu;Lee, Gwan-Jung
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.37-40
    • /
    • 2012
  • EDISON CFD 수치 해법 기법을 바탕으로 초음속 유동장 속에서 spike가 부착된 무딘 물체에 대하여, spike 형상 변화에 따른 압축성 효과에 의한 항력 변화 추이를 고찰하였다. Spike의 길이 따른 항력 변화 추이를 살펴보았다. Spike의 길이가 Main body와 특정한 비율을 가질 때 항력이 최소가 된다. 이를 기준으로 spike 길이가 특정 길이만큼 줄어들거나 늘어날 경우에 각각 1.35%, 4.95% 항력이 증가하였다. 이러한 자료들은 초음속 유동장에서 무딘 물체에 가해지는 압축성 효과에 의한 저항을 최소화하기 위한 spike 설계 시 중요한 견해를 제공한다.

  • PDF

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body (초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구)

  • Seo D. K.;Seo J. I.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.