• Title/Summary/Keyword: 초음속

Search Result 960, Processing Time 0.026 seconds

Modificaion and Performance Test for improving ability of Supersonic/Hypersonic Wind Tunnel(MAF) (초음속/극초음속 풍동(MAF)의 성능 향상을 위한 개조 및 검증)

  • Choi, Won-Hyeok;Seo, Dong-Su;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.717-722
    • /
    • 2010
  • Supersonic/Hypersonic wind tunnel is a facility which is intended to test and to observe the physical phenomena around a model by creating supersonic flow in the test section. In designing an airplane, the wind tunnel test is demanded to analyzing aerodynamic characteristics of the model without making a prototype. In this research, the model aerodynamic facility(MAF) is modified for the purpose of increasing running time and its functionality. New pneumatic valves for remote control was installed for safety requirement, and new air tanks was installed on MAF as well. A pipe system is also modified to use those new valves and tanks, and the ceiling and side glasses of the test section are switched to ones with the larger surface area. After the MAF modification, a test is performed at Mach 2, 3 and 4. In this test, shadow graph technique, one of the flow visualization methods, is used to visualize supersonic flow field. The pressure in the settling chamber and working section at Mach 2, 3 and 4 was measured in each case. As a result, the possible model size and running time are obtained.

  • PDF

Aerodynamic Characteristics of Supersonic Jets Impinging on $60^{\cire}$ Wedge (꼭지각이 $60^{\cire}$인 쐐기에 충돌하는 초음속 제트의 공기역학적 특성)

  • 박종호;이택상;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • Supersonic jets impinging on $60^{\cire}$ wedge were investigated to obtain fundamental design data for jet deflector It was of interest to study flow phenomena such as shock interaction and separation induced by shear layer. Experiments using supersonic cold flow system were conducted for Schlieren flow visualization and measurement of surface pressure. Numerical results were compared with the experimental results. The major parameters are underexpansion ratio, distance from nozzle to apex and design Mach number. Flow conditions were obtained for the wedge shock to attach on or detach from the wedge. The dominant feature of flow-field is shock pattern induced by the Interaction between the wedge shock and the barrel shock.

Determination of Thrust Distribution in the Supersonic Combustor (초음속 연소기 내부의 추력 분포 계산)

  • Heo, Hwan Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.69-75
    • /
    • 2003
  • The ideal thrust function is used to determine the local thrust of supersonic combustor. Method of thrust determination from measured pressures are applied to the Mach 2.5 model supersonic combustor. In this application, measured pressures from the experiments in the University of Michigan are used to determine the local thrust of supersonic combustor. Marginal results of local thrust are obtained and discussed. Combustion and wedge affect thrust distributions in the upstream region significantly. The thrust determination from pressure measurements can be a simple, feasible and applicable method, especially when thrust stand is not available.

Acoustic Analysis of Exhaust Supersonic Jet From a Rocket Motor Using 2-D Axis-symmetric Computational Analysis (2차원 축대칭 전산해석을 이용한 초음속 로켓 제트 음향 해석)

  • Yang, Young-Rok;Jeon, Hyuck-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.725-730
    • /
    • 2020
  • This study was conducted to reduce the computation time required for the computational acoustic analysis of the supersonic rocket jet plume. In order to reduce the computation time, computational acoustic analysis was performed assuming that the supersonic jet plume is a two-dimensional axis-symmetric problem. The results of computational acoustic analysis showed similar results to the acoustic load measurement results. Through this study, it was confirmed that the acoustic load prediction of the supersonic rocket jet plume can be predicted using a two-dimensional axis-symmetric computational analysis.

Unsteady Separation Characteristics of Air-Launching Rocket from Full-Geometry Mother Plane (초음속 공중발사를 위한 전기체-로켓의 비정상 분리 유동특성)

  • Ji, Young-Moo;Byun, Yung-Hwan;Park, Jun-Sang;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.474-482
    • /
    • 2007
  • An analysis is made for flow and rocket motion during a supersonic separation stage of an air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow fields around the rocket which is being separated from the mother plane configuration(F-4E Phantom). Simulation results clearly demonstrate the effect of shock-expansion wave interaction around both of the rocket and the mother plane. To predict the behavior of the ALR by the change of the center-of-gravity, three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rockets for safe separation is proposed.

Study on the Flow Characteristics of Supersonic Air Intake at Mach 4 (마하4 초음속 공기 흡입구 유동 특성에 관한 연구)

  • ;;;;Shigeru , Aso
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.61-70
    • /
    • 2006
  • A Supersonic air intake model was designed for the high performance ramjet and dual-mode scramjet engine to operate at Mach 4 flight condition. The air intake was tested in the blowdown-type wind tunnel of Kyushu University to identify the internal flow characteristics corresponding to the flight parameters such as the back pressure, angle of attack and angle of yaw. Flow visualization was achieved by the Schlieren and oil flow visualization techniques. The intake performance was analyzed quantitatively based on the surface pressure and total Pressure measurements. The experimental results were compared with the computational fluid dynamics results. The present study exhibits the fundamental but rarely found experimental results of the high Mach number supersonic air intake.

Experimental Study on the Flow Characteristics of Supersonic Turbine with the Axial Gap Ratios (초음속 터빈의 축방향 간격비에 따른 유동 특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.136-142
    • /
    • 2007
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The supersonic cascade with a 2-dimensional supersonic nozzle was tested for the axial gap ratio (${\delta}$) of the supersonic turbine that is the one of the turbine design parameter. Firstly, the flow was visualized by a single pass Schlieren system. Next, total and static pressure of the cascade were measured by a pressure scanning system. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji Young-Moo;Lee Jae-Woo;Byun Yung-Hwan;Park Jun-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.36-40
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Control of the Pressure Oscillations in Supersonic Cavity Flows (초음속 공동유동에서 발생하는 압력변동의 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The present study describes unsteady flow phenomena generated in a supersonic flow passing over a rectangular cavity and suggests a way of control of pressure oscillation, doing harm to overall performance and stable operation of aerodynamic and industrial applications. The three-dimensional, unsteady, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme and large eddy simulation. The cavity flow are simulated with and without control methods, including a triangular bump and blowing jet installed near the leading edge of the cavity. The results show that the pressure oscillation is attenuated by both control techniques, especially near the trailing edge of cavity.

  • PDF

Development and Operating Test of the Supersonic Wind Tunnel with $25cm{\times}20cm$ Test Section ($25cm{\times}20cm$ 초음속 풍동 개발 및 시험 평가)

  • Kim, Sei-Hwan;Park, Ji-Hyun;Lee, Seung-Bok;Jeung, In-Seuck;Lee, Hyung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.777-780
    • /
    • 2011
  • The supersonic wind tunnel is a common facility to studies the aerodynamic phenomenon around the high speed vehicle or weapon system whose operating speed is greater than sonic speed. In this study, a design procedure and selecting the components of a new supersonic wind tunnel whose nozzle exit is $125mm{\times}100mm$ is considered. An operating test of this wind tunnel is being conducted to compare the result with the design values, mach number, etc.

  • PDF