• Title/Summary/Keyword: 초음속유동

Search Result 553, Processing Time 0.024 seconds

A Fundamental Study of Supersonic Coaxial Jets for Gas Cutting (가스절단용 초음속 제트유동에 관한 기초적 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2001
  • Jet cutting technology currently makes use of a generic supersonic gas jet to improve the cutting speed and performance. In order to get a better understanding of the flow characteristics involved in the supersonic jet cutting technology, the axisymmetric Navier-Stokes equations have been solved using a fully implicit finite volume method. Computations have been conducted to investigate some major characteristics of supersonic coaxial turbulent jets. An assistant gas jet has been imposed on the primary gas jet to simulate realistic jet cutting circumstance. The pressure and the temperature ratios of the primary and assistant gas jets are altered to investigate the major characteristics of the coaxial jets. The total pressure and Mach number distributions, shock wave systems, and the jet core length which characterize the coaxial jet flows are strongly affected by the pressure ratio, but not significantly dependent on the total temperature ratio. The assistant gas jet greatly affects the basic flow characteristics of the shock system and the core length of under and over-expanded jets.

Numerical Analysis on the Effect of Blade Sweep and Lean on the Performance of a Partial Admission Supersonic Turbine (스윕과 린을 적용한 부분흡입형 초음속 터빈의 성능 특성에 관한 수치적 연구)

  • Kwon, Tae-Un;Jeong, Soo-In;Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.36-43
    • /
    • 2011
  • The present study deals with numerical flow analysis to investigate the effect of sweep and lean on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for three different angles. The angles of sweep and lean are $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The results of the flow analysis showed that the efficiency is improved as the sweep angle is increased. However, a sweep angle of $5^{\circ}$ was less effective in comparison with the baseline model. The total pressure loss was reduced as the lean angle is increased, but the total to static efficiency was decreased.

Construction of the Pressure Sensitive Paint System (PSP 압력측정 시스템의 구축)

  • Jeon, Young-Jin;Kim, Ki-Su;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Pressure Sensitive Paint(PSP) means a reacting paint in pressure. The calibration of PSP and the wind tunnel test of PSP painted model are required to measure pressure by using PSP. Therefore, the post processing from these results shows the information and image of the pressure distribution. PSP can show the information of total pressure from the wind tunnel test and the calibration. In this study, equipments of PSP are composed, and experiment is accomplished by using PSP. The surface pressure distribution around the wall of nozzle is measured by PSP. The measured pressure has similar results to those of the CFD and pressure tap measurement.

The Numerical Analysis of Asymmetric Vortices around the Slender body at High Angle of Attack Supersonic Flow (고받음각 초음속 유동에서의 세장형 몸체 주변에 발생하는 비대칭와류에 대한 수치적 연구)

  • Jeon, Young-Jin;Ji, Young-Moo;Kim, Ki-Su;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.335-338
    • /
    • 2007
  • In the case of an antiaircraft missile, high angle of attack flight capability is required to get the agile maneuverability in a supersonic flow. Even through a symmetric slender body does not have side slip, asymmetric vortex is generated at high angle of attack conditions. This asymmetric vortex produces unnecessary side force and yawing moment; hence, these effects deteriorate directional stability. In this study, the numerical analysis of asymmetric vortices around the slender body was conducted at high angle of attack supersonic flow. In order to simulate the vortices, a bump is installed on the nose of the slender body. As a result of the numerical analysis, the asymmetric vortices around the slender body could be simulated.

  • PDF

A Numerical Study on the Performance Characteristics of a Partial Admission Axial Supersonic Turbine with Swept Rotor Blades (로터 블레이드 스윕을 적용한 부분흡입형 축류 초음속 터빈의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • In this study, we performed three-dimensional CFD analysis to investigate the effect of the rotor blade sweep of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for three different sweep cases, No sweep(NSW), Backward sweep(BSW), and Forward sweep(FSW), using flow analysis program, FLUENT 6.3 Parallel. The results of the BSW model show reduced mass flow rates of tip leakage and increased total-to-static efficiency. The strength of leading edge bow shock was decreased a little with BSW model. And the BSW model also shows a good performance around the hub region compared to other models.

Numerical Analysis on the Effect of Blade Sweep and Lean on the Performance of a Partial Admission Supersonic Turbine (스윕과 린을 적용한 부분흡입형 초음속 터빈의 성능 특성에 관한 수치적 연구)

  • Kwon, Ta-Eun;Jeong, Soo-In;Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.786-792
    • /
    • 2010
  • The present study deals with numerical flow analysis to investigate the effect of sweep and lean on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for three different angles. The angles of sweep and lean are $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The results of the flow analysis showed that the efficiency is improved as the sweep angle is increased. However, a sweep angle of $5^{\circ}$ was less effective in comparison with the baseline model. The total pressure loss was reduced as the lean angle is increased, but the total to static efficiency was decreased.

  • PDF

Effect of flow bleed on shock wave/boundary layer interaction (유동의 흡입이 충격파/경계층의 간섭현상에 미치는 영향)

  • Kim, Heuy-Dong;Matsus, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1273-1283
    • /
    • 1997
  • Experiments of shock wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer flow bleed on the interaction flow field in a straight tube. Two-dimensional slits were installed on the tube walls to bleed the turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled within the range of 11 per cent. The wall pressures were measured by the flush mounted transducers and Schlieren optical observations were made for almost all of the experiments. The results show that the boundary layer flow bleed reduces the multiple shock waves to a strong normal shock wave. For the design Mach number of 1.6, it was found that the normal shock wave at the position of the silt was resulted from the main flow choking due to the suction of the boundary layer flow.

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • 김희동;이준희;우선훈;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Wavier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are blown, we can predict the critical mass flow with good accuracy.

  • PDF

Numerical Study on the Mixing Enhancement of Parallel Supersonic-subsonic Wakes Using Wall Cavities (공동을 이용한 초음속-아음속 평행류에서의 혼합증대에 관한 수치적 연구)

  • Moon, Seong-Mok;Chang, Se-Myong;Kim, Chong-Am;Lee, Kyoung-Hoon;Kim, In-Soo;Ahn, Su-Hong;Woo, Kwan-Je
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.353-356
    • /
    • 2010
  • A computational study on the enhancement of parallel supersonic-subsonic mixing wakes is conducted and compared with available experimental data. The first aim of the present work is to show a direct comparison between numerical predictions and equivalent experimental data for the baseline case. The Pitot pressure distribution data are in good agreement between computation and experiment, and the results show that Menter's SST model with the compressibility correction gives the best performance. Further we investigate the effects of primary parameters such as the position of the cavity, and the arrangement of the cavity at the given flow condition.

  • PDF