• Title/Summary/Keyword: 초분광영상 분석

Search Result 115, Processing Time 0.03 seconds

Mosaic image generation of AISA Eagle hyperspectral sensor using SIFT method (SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성)

  • Han, You Kyung;Kim, Yong Il;Han, Dong Yeob;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this paper, high-quality mosaic image is generated by high-resolution hyperspectral strip images using scale-invariant feature transform (SIFT) algorithm, which is one of the representative image matching methods. The experiments are applied to AISA Eagle images geo-referenced by using GPS/INS information acquired when it was taken on flight. The matching points between three strips of hyperspectral images are extracted using SIFT method, and the transformation models between images are constructed from the points. Mosaic image is, then, generated using the transformation models constructed from corresponding images. Optimal band appropriate for the matching point extraction is determined by selecting representative bands of hyperspectral data and analyzing the matched results based on each band. Mosaic image generated by proposed method is visually compared with the mosaic image generated from initial geo-referenced AISA hyperspectral images. From the comparison, we could estimate geometrical accuracy of generated mosaic image and analyze the efficiency of our methodology.

A Study on Measurement of Algae Concentration in Reservoir Using UAV-Based Hyperspectral Image (UAV 기반 초분광영상을 활용한 저수지 조류농도 산정 연구)

  • Kim, Jong Min;Kyun, Yeong Hwa;Kim, Dong Su;Kim, Young Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.110-110
    • /
    • 2021
  • 사회적, 환경적으로 크고 작은 문제를 일으키는 녹조현상은 수생태계에서 1차 생산자로 없어서는 안 될 조류의 과대 성장으로 인해 주로 나타난다. 담수조류는 크게 녹조류, 남조류, 규조류 3종으로 나누어지며, 특히 남조류는 계절별 천이에 따른 발생 시 과대 성장하는 특성으로 인해 녹조현상에 가장 큰 원인이 된다. 이러한 녹조현상의 원인에 따라 환경부에서는 발령기준 항목을 chl-a와 남조류 세포수에서 2016년 이후 남조류 세포수 만으로 발령기준 항목을 개정하였다. 따라서, 녹조현상에 대한 신속한 대처를 위해서는 남조류에 대한 분포에 대해 파악하는 것이 가장 우선시 되며 이를 위해 신속한 모니터링을 필요로 한다. 하지만 현재 조류 모니터링을 위해서는 직접 채수를 통한 검경 또는 Lisst, YSI와 같은 직접 계측 센서를 활용하여 모니터링을 진행을 하고 있으며 이러한 점, 선 단위의 측정은 전반적인 조류 분포 및 현황에 대하여 파악과 신속한 모니터링에 한계가 있다. 이러한 한계에 대안으로 위성영상, 다중분광 및 초분광 영상을 활용한 면단 위의 원격 모니터링을 통해 신속하고 하천 내 전반적인 조류 농도 분석을 위한 연구가 다양하게 진행되고 있다. 본 연구에서는 UAV를 활용한 초분광센서를 이용하여 하천과 일정한 반사율을 가지는 반사천을 촬영하고 취득한 초분광영상 보정 및 분석을 진행하였다. 최적 밴드 비를 산정하고 YSI를 통한 Chl-a 결과를 이용하여 분광 특성별 맵핑을 통한 공간적 분포의 조류 농도를 산정하고자 한다.

  • PDF

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.

Correlation Analysis on the Water Depth and Peak Data Value of Hyperspectral Imagery (초분광 영상의 최대 강도값과 하천 수심의 상관성 분석)

  • Kang, Joongu;Lee, Changhun;Yeo, Hongkoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.171-177
    • /
    • 2019
  • The hyperspectral images can be analyzed in more detail compared to the conventional multispectral images so they can be used for analyzing surface properties which are difficult to detect. Therefore, the purpose of this study is to obtain information on river environment by using actual depth data and drone-based images. For this purpose, this study acquired the image values for 100 points of 1 survey line using drone-based hyperspectral sensors and analyzed the correlation in comparison with the actual depth information obtained through ADCP. The ADCP measurements showed that the depth tended to get deeper toward the center and that the average water depth was 0.81 m. As a result of analyzing the hyperspectral images, the value of maximum intensity was 645 and the value of minimum intensity was 278, and the correlation between the actual depth and the results of analyzing the hyperspectral images showed that the depth increased as the value of maximum intensity decreased.

Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species (침엽수종 분류를 위한 초분광영상과 다중분광영상의 비교)

  • Cho, Hyunggab;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.25-36
    • /
    • 2014
  • Multispectral image classification of individual tree species is often difficult because of the spectral similarity among species. In this study, we attempted to analyze the suitability of hyperspectral image to classify coniferous tree species. Several image sets and classification methods were applied and the classification results were compared with the ones from multispectral image. Two airborne hyperspectral images (AISA, CASI) were obtained over the study area in the Gwangneung National Forest. For the comparison, ETM+ multispectral image was simulated using hyperspectral images as to have lower spectral resolution. We also used the transformed hyperspectral data to reduce the data volume for the classification. Three supervised classification schemes (SAM, SVM, MLC) were applied to thirteen image sets. In overall, hyperspectral image provides higher accuracies than multispectral image to discriminate coniferous species. AISA-dual image, which include additional SWIR spectral bands, shows the best result as compared with other hyperspectral images that include only visible and NIR bands. Furthermore, MNF transformed hyperspectral image provided higher classification accuracies than the full-band and other band reduced data. Among three classifiers, MLC showed higher classification accuracy than SAM and SVM classifiers.

Classification and evaluation of river environment using Hyperspectral images (초분광 영상정보를 활용한 하천환경 분류 및 평가)

  • Han, Hyeong Jun;Lee, Chang Hun;Kang, Joon Gu;Kim, Jong Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.423-423
    • /
    • 2019
  • RGB나 다중분광영상은 높은 공간 해상도로 인해 크기가 작은 물질의 클래스를 부여하는데 있어서는 효과적이지만 분광해상도가 낮아 다양한 종류의 지표물 분류 및 분광적으로 미세한 차이를 보이는 대상 체간의 분류에는 한계를 가지고 있다. 그러나 초분광 영상(Hyperspectral Image)은 대상 객체의 분광 반사곡선을 수백개의 연속적인 분광 파장대 영역으로 상세하게 해당 물체의 정보를 취득할 수 있는 기능을 가지고 있다. 최근 국내에서도 초분광 영상을 이용한 토지피복도 작성 및 환경 모니터링 등 다양한 분야에 적용하기 위한 연구가 시도되고 있다. 최근에는 드론과 같은 소형 UAV를 활용하여 경제적인 비용으로 시공간해상도가 높은 영상을 획득하는 것이 가능하게 되었으며 분광정보를 수집하는 영상 장비의 발전으로 드론에 탑재가 가능한 경량의 소형 초분광센서가 개발됨으로써 보다 높은 분광해상도의 영상을 취득할 수 있게 되었다. 본 연구에서는 효율적인 하천환경조사를 위해 UAV를 활용하여 고해상도 초분광 영상을 취득하였으며, 차원축소법과 분류기 적용에 따른 공간 분류 정확도 분석을 통해 하천환경에 대한 분류 및 평가를 실시하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다.

  • PDF

The study on Decision Tree method to improve land cover classification accuracy of Hyperspectral Image (초분광영상의 토지피복분류 정확도 향상을 위한 Decision Tree 기법 연구)

  • SEO, Jin-Jae;CHO, Gi-Sung;SONG, Jang-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • Hyperspectral image is more increasing spectral resolution that Multi-spectral image. Because of that, each pixel of the hyperspectral image includes much more information and it is considered the most appropriate technic for land cover classification. but recent research of hyperspectral image is stayed land cover classification of general level. therefore we classified land cover of detail level using ED, SAM, SSS method and made Decision Tree from result of that. As a result, the overall accuracy of general level was improved by 1.68% and the overall accuracy of detail level was improved by 5.56%.

Accuracy Assessment of Supervised Classification using Training Samples Acquired by a Field Spectroradiometer: A Case Study for Kumnam-myun, Sejong City (지상 분광반사자료를 훈련샘플로 이용한 감독분류의 정확도 평가: 세종시 금남면을 사례로)

  • Shin, Jung Il;Kim, Ik Jae;Kim, Dong Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • Many studies are focused on image data and classifier for comparison or improvement of classification accuracy. Therefore studies are needed aspect of the training samples on supervised classification which depend on reference data or skill of analyst. This study tries to assess usability of field spectra as training samples on supervised classification. Classification accuracies of hyperspectral and multispectral images were assessed using training samples from image itself and field spectra, respectively. The results shown about 90% accuracy with training sample collected from image. Using field spectra as training sample, accuracy was decreased 10%p for hyperspectral image, and 20%p for multispectral image. Especially, some classes shown very low accuracies due to similar spectral characteristics on multispectral image. Therefore, field spectra might be used as training samples on classification of hyperspectral image, although it has limitation for multispectral image.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Measurement of Anthocyanin Accumulations in Multiple Seedling Plants Using Hyperspectral Imaging Technology (초분광 기술을 이용한 다수의 유묘 내 안토시아닌 함량 측정)

  • Kim, Hyo-suk;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.5
    • /
    • pp.215-219
    • /
    • 2021
  • Recently a system for nondestructive measurement of seedling plants in real time has been attracting attention as an essential element in fields such as the "smart farm". This study reports the simultaneous measurement of anthocyanin accumulations in leaf tissues in a large number of bok choy, using a hyperspectral imaging system. To measure many seedlings simultaneously, an existing hyperspectral imaging system is modified. In this paper, a total of 96 seedlings are measured: 24 each of 4 cultivars. Using the hyperspectral data-acquisition system, 12 seedlings can be analyzed simultaneously within 3 minutes. The hyperspectral imaging technology proposed in this paper is shown to provide an analytic system comparable to destructive chemical analysis. This hyperspectral imaging technology can be applied to a high-throughput plant-phenotyping system, owing to its capability of measuring a large number of specimens at the same time.