• Title/Summary/Keyword: 초미세자기장

Search Result 26, Processing Time 0.041 seconds

The Study of Hyperfine Fields for Co0.9Zn0.1Cr1.9857Fe0.02O4 (Co0.9Zn0.1Cr1.9857Fe0.02O4 물질의 초미세자기장 연구)

  • Choi, Kang-Ryong;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-42
    • /
    • 2008
  • [ $AB_2X_4$ ](A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$

The Study on Mössbauer Spectroscopy of Zn1-xFexO (Zn1-xFexO의 뫼스바우어 분광학적 연구)

  • Kim, S.J.;Lee, S.R.;Park, C.S.;Kim, E.C.;Joh, Y.G.;Kim, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.75-78
    • /
    • 2008
  • $AB_2X_4$(A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$

$M\""{o}ssbauer$ Effet Studies on Nanocrystalline $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ Alloy (초미세결정립 $ Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ 합금의 $M\""{o}ssbauer$ 효과 연구)

  • 신영남;김재경;양재석;조익한;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • The crystallization behavior of the amorphous $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ alloy with isothermal annealing at $552^{\circ}C$ was studied by $M\"{o}ssbauer$ spectroscopy. The amorphous phase was revealed to coexist together with $Do_{3}-FeSi$ nanocrystalline and Cu-duster in annealed alloys by $M\"{o}ssbauer$ spectrum analysis. At the early stage of crystallization, Si content of FeSi is high due to the creation of Cu-cluster, and decreases with annealing until 60 minutes, which results in the increase in the mean hyperfine field of FeSi, and thereafter keeps constant. After 60 minutes, the decrease in the mean hyperfine field of the residual armrphous, in spite of a slight change in the volume fraction of the FeSi and the residual armrphous, is caused by the increase in the content of Nb and B in residual amorphous phase. Both directions of the hyperfine field, those of the FeSi and the residual amorphous, become randomly oriented in about 60 minutes. For FeSi and Cu-duster, the Avrami exponents are 0.51 and O.65, the activation energies are 2.35 eV and 2.44 eV, and the incubation times are 2.4 minutes and 0.8 minutes respectively. Earlier formation of Cu-duster than that of FeSi is coincidence with the fact that Cu atom promotes the nucleation of the FeSi.

  • PDF

Crystal Structure and Magnetic Properties of Iron Doped La-Sr-Mn-O (철을 미량 치환한 La-Sr-Mn-O의 결정학적 및 자기적 특성 연구)

  • Ahn, Geun-Young;Shim, In-Bo;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2002
  • The iron-doped perovskite La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$compound has been studied by x-ray diffraction, Mossbauer spectroscopy, and vibrating sample magnetometry. The single phase of the polycrystalline La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$powder has been prepared by a waterbased solgel method. Crystalline La$_{0.67}$Sr$_{0.33}$Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$was a rombohedral structure with lattice parameters a$_{0}$=5.480 $AA$, $alpha$=60.259$^{circ}$. Mossbauer spectra of La$_{0.67}$Sr$_{0.3}$/Mn$_{0.99}$$^{57}$Fe$_{0.01}$O$_3$have been taken at various temperatures ranging from 20 to 400 K. As the temperature increases toward the Curie temperature, T$_{c}$=375 K, the Mossbauer spectra show line broadening and the difference between the 1,6 and 3,4 linewidths is caused by the anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of +H (P$_{+}$=0.80) is greater than -H (P$_{-}$=0.20). We calculated that the anisotropy energy was 124.01 erg/cm$^3$for T=150 K which is associated with the large line broadening.

Mossbauer studies of Iron Compounds (철화합물에 대한 뫼스바우어 연구)

  • 김철성
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.18-19
    • /
    • 2002
  • $^{57}$ Fe화합물에 대한 Mossbauer 분광학 연구로부터 이들 자성물질의 이성핵적이동값, 전기사중극자 분열값 및 초미세자기장의 크기를 결정하였으며 이들값으로부터 Fe의 이온상태, 큐리온도, 각 Site의 점유율, Debye온도, spin wave상수, exchange integral을 계산하였다. $^{57}$ Co감마선을 사용하는 등가속도형 Mossbauer 분광기를 이용하여 4.2 K 부터 900 K 온도영역에서 실험을 하였다. (중략)

  • PDF

Crystallographic and Mossbauer studies of $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe_{1.9}O_4$ ($Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe_{1.9}O_4$의 결정학적 및 Mossbauer 효과 연구)

  • 김우철;이승화;홍성렬;옥항남;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.118-124
    • /
    • 1998
  • $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe{1.9}O_4$ has been studied with Mossbauer spectroscopy and X-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.390{\AA}$. Mossbauer spectra of $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe{1.9}O_4$ has been taken at various temperatures ranging from 12 K to 705 K. The isomer shift indicates that iron ions are ferric at tetrahedral [A] and octahedral sites [B], respectively. The Neel temperature is determined to be $T_N=705\;K$. As the temperature increases toward $T_N$ a systematic line broadening effect in the Mossbauer spectrum is observed and interpreted to originate from different temperature dependencies of the magnetic hyperfine fields at various iron sites. The quadrupole splitting just on $T_N$ is 0.41 mm/s whereas the quadrupole shift below $T_N$ vanishes. This implies that the orientation of the magnetic hyperfine field with respect to be principal axes of the electric field gradient is random.

  • PDF

Effects of Composition on Magnetic Hyperfine Field of Acicular Fe-Co Alloy Particles (침상형 Fe-Co 합금입자에서 조성이 초미세자기장에 미치는 효과)

  • 박재윤;박용환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • Acicular Fe-Co alloy particles are one of the candidates for high-density magnetic recording media. We examined the effects of Co additions on the magnetic properties of Fe-Co alloy particles by using M$\'{o}$ssbauer spectroscopy, TEM, and X-ray diffraction. Acicular $Fe_n$Co (n=5, 4, 3, 2) alloy particles coated with silica, were prepared by a chemical coprecipitation method and subsequent H $_2$ reduction. The crystal structure was found to be cubic in all n ranges. The lattice constant $a_0$ decreases with increasing Co contents. Analysis of $^{57}Fe$ M\'{o}$ssbauer effect data in terms of the local configurations of Co atoms has permitted the influence of magnetic hyperfine interactions to be monitored.

  • PDF

Mossbauer Effect on the Influences of Substituted $Al^{3+}$ of Goethit in Clay Cheju Island (제주도 찰흙에 함유된 Goethite에서 $Al^{3+}$ 치환 영향에 대한 Mossbauer 효과)

  • 강동우;김두철;고정대;홍성락;송관철
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.196-204
    • /
    • 1997
  • In order to study the effect of substituted $Al^{3+}$ of goethite, which was collected from Shinpyeongli in Cheju Island, we used X-ray diffractometer and Mossbauer spectrometer. In X-ray diffraction analysis, the X-ray diffraction peaks of goethite are not detected due to the high substituted Al contents of goethite. Isomer shifts indicated that the valence of Fe ions is almost oxidized trivalent of high spin state. It is believed that the contents of substituted diamagnetic $Al^{3+}$ for $Fe^{3+}$ is about 15.5 mol%. It seems that Neel temperature and saturated magnetic hyperfine field of the clay goethite are about 250 K and 498 kOe, respectively. For the temperature lower than Neel temperature, quadrupole splittings of the clay goethite are greatly influenced by $Al^{3+}$ substitution. It is believed that the high decrease of Neel temperature and magnetic hyperfine field of the clay goethite results from the magnetic dilution produced by substituting the diamagnetic $Al^{3+}$/TEX> for $Fe^{3+}$.

  • PDF