• Title/Summary/Keyword: 초미세먼지(PM-2.5)

Search Result 130, Processing Time 0.032 seconds

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Atmospheric Dispersion of Particulate Matters (PM10 and PM2.5) and Ammonia Emitted from Livestock Farms Using AERMOD (AERMOD를 이용한 축산 미세먼지, 초미세먼지, 암모니아 배출의 대기확산 영향도 분석)

  • Lee, Se-Yeon;Park, Jinseon;Jeong, Hanna;Choi, Lak-Yeong;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.13-25
    • /
    • 2021
  • The particulate matters (PM10 and PM2.5) and ammonia emitted from livestock farms as dispersed to urban and residential areas can increase the public's concern over the health problem, social conflicts, and air quality. Understanding the atmospheric dispersion of such matters is important to prevent the problems for the regulatory purposes. In this study, AERMOD modeling was performed to predict the dispersion of livestock particulate matters and ammonia in Gwangju metropolitan city and five surrounding cities. The five cities were divided into 40 sub-zones to model the area-based emissions which varied with the number of livestock farms, species and growth stages of the animals. As a result, the concentrations of PM10, PM2.5 and ammonia resulted from livestock farms located in the surrounding cities were 2.00 ㎍ m-3, 0.30 ㎍ m-3 and 0.04 ppm in the southwestern part of Gwangju based on the average concentration of 1 hour. These values accounted for 0.7% of PM10 concentration, 0.5% of PM2.5 concentration, and 0.4% of the ammonia concentration in Gwangju, contributing to a small amount of air pollution compared to other sources. As preventive measures, the plantation was applied to high emission source areas to reduce particulate matters and ammonia emissions by 35% and 31%, respectively, and resulted in decrease of the area of influence by 57% for particulate matters and 59% for ammonia.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation - (가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 -)

  • Kim, Shin-Woo;Lee, Dong-Kun;Bae, Chae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.

Analysis of PM2.5 Pattern Considering Land Use Types and Meteorological Factors - Focused on Changwon National Industrial Complex - (토지이용 유형과 기상 요인을 고려한 PM2.5 발생 패턴 분석 - 창원국가산업단지를 중심으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.1-17
    • /
    • 2022
  • This study analyzed the PM2.5 pattern by using data measured for one year from June 2020 to May 2021 by 21 low-cost sensors installed near the Changwon National Industrial Complex in Changwon, Gyeongsangnam-do. For the PM2.5 pattern, the land use types around the measuring points and meteorological factors such as air temperature and wind speed were considered. The PM2.5 concentration was high from November to March in winter, and from 1 to 9 in the morning and early in the morning by time zone. The concentration of PM2.5 was higher as it got closer to the industrial area, but the concentration was lower in the residential area and public facility area. In terms of meteorological factors, the higher the air temperature and wind speed, the lower the concentration of PM2.5. As a result of this study, it was possible to identify the PM2.5 patter near Changwon National Industrial Complex. This result will be useful data that can be used in urban and environmental planning to improve air quality including PM2.5 in urban area in the future.

Regional Analysis of Extreme Values by Particulate Matter(PM2.5) Concentration in Seoul, Korea (서울시 초미세먼지(PM2.5) 지역별 극단치 분석)

  • Oh, Jang Wook;Lim, Tae Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • Purpose: This paper aims to investigate the concentration of fine particulate matter (PM2.5) in the Seoul area by predicting unhealthy days due to PM2.5 and comparing the regional differences. Methods: The extreme value theory is adopted to model and compare the PM2.5 concentration in each region, and each best model is selected through the goodness of fitness test. The maximum likelihood estimation technique is applied to estimate the parameters of each distribution, and the fitness of each model is measured by the mean absolute deviation. The selected model is used to estimate the number of unhealthy days (above $75{\mu}g/m^3$ PM2.5 concentrations) in each region, with which the actual number of unhealthy days are compared. In addition, the level of PM2.5 concentration in each region is analyzed by calculating the return levels for periods of 6 months, 1 year, 3 years, and 5 years. Results: The Mapo (MP) area revealed the most unhealthy days, followed by Gwanak (GW) and Yangcheon (YC). On the contrary, the number of unhealthy days was low in Seodaemun (SDM), Songpa (SP) and Gangbuk (GB) areas. The return level of PM2.5 was high in Gangnam (GN), Dongjak (DJ) and YC. It will be necessary to prepare for PM2.5 than other regions. On the contrary, Gangbuk (GB), Nowon (NW) and Seodaemun (SDM) showed relatively low return levels for PM2.5. However, in most of the regions of Seoul, PM25 is generated at a very poor level ($75{\mu}g/m^3$) every 6months period, and more than $100{\mu}g/m^3$ PM2.5 occur every 3 years period. Most areas in Seoul require more systematic management of PM2.5. Conclusion: In this paper, accurate prediction and analysis of high concentration of PM2.5 were attempted. The results of this research could provide the basis for the Seoul Metropolitan Government to establish policies for reducing PM2.5 and measuring its effects.

Measurement of PM2.5 Concentrations and Comparison of Affecting Factors in Residential Houses in Summer and Autumn (여름과 가을의 주택실내 초미세먼지(PM2.5) 농도 측정 및 영향요인 비교)

  • Dongjun Kim;Gihong Min;Jihun Shin;Youngtae Choe;Kilyoong Choi;Sang Hyo Sim;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Background: Indoor PM2.5 concentrations in residential houses can be affected by various factors depending on the season. This is because not only do the climate characteristics depend on the season, but the activity patterns of occupants are also different. Objectives: The purpose of this study is to compare factors affecting indoor PM2.5 concentrations in apartments and detached houses in Daegu according to seasonal changes. Methods: This study included 20 households in Daegu, South Korea. The study was conducted during the summer (from July 10 to August 10, 2023) and the autumn (from September 11 to October 9, 2023). A sensor-based instrument for PM2.5 levels was installed in the living room of each residence, and measurements were taken continuously for 24 hours at intervals of one minute during the measurement period. Based on the air quality monitoring system data in Daegu, outdoor PM2.5 concentrations were estimated using ordinary kriging (OK) in Python. In addition, the indoor activities of the occupants were investigated using a time-activity pattern diary. The affecting factors of indoor PM2.5 concentration were analyzed using multiple regression analysis. Results: Indoor and outdoor PM2.5 concentrations of the residences during summer were 15.27±11.09 ㎍/m3 and 11.52±7.56 ㎍/m3, respectively. Indoor and outdoor PM2.5 concentrations during autumn were 13.82±9.61 ㎍/m3 and 9.57±5.50 ㎍/m3, respectively. The PM2.5 concentrations were higher in summer compared to autumn both indoors and outdoors. The primary factor affecting indoor PM2.5 concentration in summer was occupant activity. On the other hand, during the autumn season, the primary affecting factor was outdoor PM2.5 concentration. Conclusions: Indoor PM2.5 concentration in residential houses is affected by occupant activity such as the inflow of outdoor PM2.5 concentration, cooking, and cleaning, as found in previous studies. However, it was revealed that there were differences depending on the season.

Characteristics of PM2.5 Emission and Distribution in a Highly Commercialized Area in Seoul, Korea (상업지역의 초미세먼지(PM2.5) 발생특성 연구)

  • Seo, Young-Ho;Ku, Myeong-Seong;Choi, Jin-Won;Kim, Kyeong-Min;Kim, Sang-Mi;Sul, Kyung-Hwa;Jo, Hyo-Jae;Kim, Su-Jin;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • The pollution of particulate matter (PM) is considered one of the hot socioenvironmental issues at present time. In this study, we investigated the distribution of fine particulate matter ($PM_{2.5}$) in Wangsimni commercial areas in Seoul, Korea to learn more about its environmental behavior in an urban area. Our analysis of $PM_{2.5}$ was made to distinguish the $PM_{2.5}$ pollution levels between three different types of site characteristics: (1) densely populated area, (2) thinly populated area, and (3) traffic roadside. Moreover, to assess the temporal trends in our study, the concentration levels of $PM_{2.5}$ were also compared between weekdays and weekends and between early in the afternoon and evening. The average concentration of $PM_{2.5}$ from densely and thinly populated areas were measured as $36.0{\pm}13.1$ and $32.3{\pm}11.2{\mu}g/m^3$, respectively. If the results are compared between different time bands, there were apparent differences between weekdays ($29.6{\pm}10.8{\mu}g/m^3$) and weekends ($36.9{\pm}12.1{\mu}g/m^3$). Such difference was also evident between noon ($27.8{\pm}5.8{\mu}g/m^3$) and evening ($38.3{\pm}13.7{\mu}g/m^3$). According to our research, concentration of $PM_{2.5}$ in the study area was affected more sensitively by time zone rather than the population density. The measurement data was also analyzed by drawing concentration map of $PM_{2.5}$ in the Wangsimni commercial areas based on data contouring method.

A Study on the PM2.5 forcasting Method in Busan Using Deep Neural Network (DNN을 활용한 부산지역 초미세먼지 예보방안 )

  • Woo-Gon Do;Dong-Young Kim;Hee-Jin Song;Gab-Je Cho
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.595-611
    • /
    • 2023
  • The purpose of this study is to improve the daily prediction results of PM2.5 from the air quality diagnosis and evaluation system operated by the Busan Institute of Health and Environment in real time. The air quality diagnosis and evaluation system is based on the photochemical numerical model, CMAQ (Community multiscale air quality modeling system), and includes a 3-day forecast at the end of the model's calculation. The photochemical numerical model basically has limitations because of the uncertainty of input data and simplification of physical and chemical processes. To overcome these limitations, this study applied DNN (Deep Neural Network), a deep learning technique, to the results of the numerical model. As a result of applying DNN, the r of the model was significantly improved. The r value for GFS (Global forecast system) and UM (Unified model) increased from 0.77 to 0.87 and 0.70 to 0.83, respectively. The RMSE (Root mean square error), which indicates the model's error rate, was also significantly improved (GFS: 5.01 to 6.52 ug/m3 , UM: 5.76 to 7.44 ug/m3 ). The prediction results for each concentration grade performed in the field also improved significantly (GFS: 74.4 to 80.1%, UM: 70.0 to 77.9%). In particular, it was confirmed that the improvement effect at the high concentration grade was excellent.

PM2.5 Simulations for the Seoul Metropolitan Area: (V) Estimation of North Korean Emission Contribution (수도권 초미세먼지 농도모사: (V) 북한 배출량 영향 추정)

  • Bae, Minah;Kim, Hyun Cheol;Kim, Byeong-Uk;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.294-305
    • /
    • 2018
  • Quantitative assessment on the impact from North Korean emissions to surface particulate matter(PM) concentration in the Seoul Metropolitan Area (SMA), South Korea is conducted using a 3-dimensional chemistry transport model. Transboundary transport of air pollutants and their precursors are important to understand regional air quality in East Asian countries. As North Korea locates in the middle of main transport pathways of Chinese pollutants, quantifiable estimation of its impact is essential for policy making in South Korean air quality management. In this study, the Community Multiscale Air Quality Modeling System is utilized to simulate regional air quality and its sensitivity, using the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment 2015 and the Clean Air Policy Support System 2013 emissions inventories for North and South Korea, respectively. Contributions were estimated by a brute force method, perturbing 50% of North and South Korean emissions. Simulations demonstrate that North Korean emissions contribute $3.89{\mu}g/m^3$ of annual surface PM concentrations in the SMA, which accounts 14.7% of the region's average. Impacts are dominant in nitrate and organic carbon (OC) concentrations, attributing almost 40% of SMA OC concentration during January and February. Clear seasonal variations are also found in North Korean emissions contribution to South Korea (and vice versa) due to seasonal characteristics of synoptic weather, especially by the change of seasonal flow patterns.