• Title/Summary/Keyword: 초기화재성상

Search Result 20, Processing Time 0.019 seconds

The Study on Real Scale Fire Test for Fire Growth of Office (사무용 공간의 화재 성장 예측을 위한 실물화재실험)

  • Kweon, Oh-Sang;Kim, Heung-Youl;Kim, Jung-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.278-281
    • /
    • 2012
  • 사무공간의 화재성상을 예측하기 위해 화재하중 $25kg/m^2$ 값을 적용하여 $2.4(L){\times}3.6(W){\times}2.4(H)\;m$ 크기의 Mock-up 화재실험을 진행하였다. 화재실험은 실물화재실험 장비인 LSC(Large Scale Calorimeter)에서 실시하였으며, 열방출률 및 질량감소율을 측정하였다. 실물화재실험 시작 후 약 1110 초에 플래시오버가 발생하였으며, 최대 열발출률은 1241.1 KW로 측정되었고 질량은 초기 219 kg에서 102 kg로 감소하였다.

  • PDF

A Study on Concurrent Fire Appearance through Openings (개구부를 통한 동시다발적인 화재성상에 관한 연구)

  • Min, Se-Hong;Lee, Jae-Moon
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.90-96
    • /
    • 2012
  • Since vertical flame spread speed on exterior materials is much faster than horizontal fire, analysis of its fire characteristic is required. For the study of vertical fire pattern created by penetrating windows or openings from the exterior wall of buildings, the research is based on the fire simulation for an aluminum-complex-panel with which is commonly used as exterior materials and consists of polyethylene core material. As a result, the flame reaches the 2nd floor after 135 seconds in the early stage of fire, the 10the floor after 470 seconds and the 30th floor, the highest floor, after 711 seconds. The result shows that fire spread abruptly expands on upper floor due to stack effect of a turbulent flow or exterior materials. In consequence, we can confirm a serious problem that a conflagration of a building through an opening that is equipped with the exterior-materials spreads into interior of building at that same time.

A Experimental Study on the Response Characteristics for Fire Detector by Combustibles (가연물에 따른 화재감지기 응답특성에 관한 실험연구)

  • Choi, Moon-Soo;Hong, Sung-Ho;Lee, Sang-Ho;Park, Sang-Tae;Yoo, Song-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.514-517
    • /
    • 2011
  • 화재감지 및 경보시스템의 설계 목표는 화재발생 초기 단계에서 화재징후를 발견, 피난의 개시를 신속하게 통수하는 것이다. 화재감지기는 다양한 건물 및 환경에 설치되기 때문에 주위 온도 및 가연물의 종류 등 환경적 측면을 심층적으로 고려하지 않으면 적절하게 감지하지 못하는 경우가 발생할 수 있다. 즉, 가연물 종류 등을 고려한 설계에 따라 설치된 화재감지기는 화재시 설계치 대로 조기에 화재를 감지하여 화재 예방 및 화재로 인한 피해를 최소화할 수 있는 것이다. 본 논문은 화재시 조기에 화재를 감지기하여 건축물내 인명피난을 목적으로 설치되는 화재감지기의 응답특성을 분석한 연구이다. 화재감지기의 응답특성을 분석하기 위하여 다양한 가연물을 발생시키고 화재감지기 종류별로 설치한 다음 각 화재감지기의 응답특성을 분석하였다. 그 결과 정온식 열감지기는 열방출률이 적은 화재를 조기에 감지하는 것에 적합하지 않은 것으로 나타났다. 광전식 연기감지기는 회색 계통의 목재류 화재성상에서 응답특성이 떨어졌고, 동일한 공간에서 화원의 수평거리와 동작시간이 비례한다고 볼 수 없었다.

  • PDF

The Study on the Prediction of Temperature Curve by Compartment Fire Experiment (구획화재실험을 통한 온도 변화 예측 기법 연구)

  • Kweon, Oh-Sang
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.44-51
    • /
    • 2014
  • In this study, the Mock-up office space experiments have been performed for the fire behavior analysis of the compartmented space used for the performance-based fire safety design of buildings. Mock-up test was conducted using the compartmented office space dimensions, which are 2.4 m wide, 3.6 m wide, and 2.4 m hight. Test was conducted with the combustible materials such as a desk, a chair, a computer ect. The fire load in the Mock-up office space was $18.74kg/m^2$. As a result, the temperature of the central compartment space to reach $600^{\circ}C$ were 394 to 408 s. The temperature of the corner near the entrance edge to reach $600^{\circ}C$ were 404 to 420 s. At this study, the temperature curve in the compartmented space has been predicted using the temperature data appling the BFD curve. The BFD curve factor based on the fire tests was determined by the maximum temperature of $900^{\circ}C$, 7 min to reach the maximum temperature, and the shape coefficient of 1.5. The initiating fire was rapidly increased to 9 min, and decreased.

The Real Scale Fire Test for Fire Safety in Apartment Housing (실물화재실험을 통한 공동주택의 화재안전성 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.57-65
    • /
    • 2009
  • This study was intended to conduct a Real-scale fire test to predict the fire behavior by unit space at the apartment building where a huge casualties and injuries are likely. After setting the inflammables inside the house, the test aimed to identify the fire characteristics to each unit item was carried out. The house was divided into 4 unit space such as kitchen, living room, bedroom and a study for a real scale fire test. As a result, bedroom reached to flashover state in 5minutes after setting the fire, indicating a rapid fire growth such as 7433.3kW of maximum thermal emissivity, 578.6ppm of carbon monoxide, 1.25ppm of carbon dioxide and $1,350^{\circ}C$ of maximum indoor temperature. Particularly, the fire growth was made up to critical temperature which might cause a severe damage to the people within 3minutes, if the fire were not extinguished at inflammable space at the early stage of fire, which stressed the need of early response. The result of a real scale fire test could be compared with the outcome of expanded simulation test and used in predicting the fire spread at the space for different use.

Study on the Fire Behavior of Spring Bed Mattress with and Without a Cooling Frame (냉각프레임 설치 유무에 따른 스프링 침대 매트리스의 화재성상에 관한 연구)

  • Seo, Bo-Youl;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • To improve the fire safety of spring bed mattress, a cooling frame including cooling material (water) was made and a cooling frame was installed under the bed mattress or between the bed mattress and bed mattress base; fire tests (real scale) were conducted with or without a cooling frame. Similar fire behavior was observed at the beginning of the test (approximately 3 minutes). Subsequently, rapid fire growth in the mattress without a cooling frame, but with a cooling frame, the decline progressed without growth. The flame spread on the top surface of the bed mattress was similar in the semicircular direction, and the average flame speed velocity was analyzed at approximately 0.005 m/s. The maximum flame height was found to be approximately 2.7 m without a cooling frame, and approximately 1.8 m with a cooling frame installed. In addition, the maximum heat release rate was measured to be approximately 740 kW without a cooling frame, and approximately 400 kW with a cooling frame installed. As a result, the flame height and heat release rate were reduced when the bed mattress was fired through the installed cooling frame.

Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness (목재 가연물의 두께에 따른 화염연소와 훈소상태에서의 화재특성)

  • Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • A series of fire tests was conducted to examine the fire characteristics of flaming and smoldering combustion of engineered wood products, which have been widely used for furniture and finishing materials in buildings. The engineered wood products of MDF, plywood, and chipboard were ignited by a radiant cone heater with incident heat flux of $50kW/m^2$. During the fire test, key parameters representing the fire characteristics such as the heat release rate, yield rate of combustion product, and effective heat of combustion were quantified in terms of thickness. The tests show two peak points of HRRPUA due to lateral fire propagation in the initial stage, followed by later fire penetration through the specimen thickness. The mass loss rate of flaming combustion was 5 times higher than that of smoldering combustion, while the CO yield rate of smoldering combustion was 10 times higher than that of flaming combustion. This study can contribute to the understanding of fire behavior of wood combustibles and provide useful data for fire analysis.

Experimental Study on the Measurement of Fire Behavior and Heat Release Rate in Building Compartment Space - Focus on Full Scale Fire Test of the Bed Mattress - (건축물 구획공간에 따른 화재성상 및 열방출율 측정에 관한 실험적 연구 - 실물규모 침대 매트리스 화재시험 중심으로 -)

  • Seo, Bo-Youl;Jang, Woo-Bin;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.28-33
    • /
    • 2018
  • To measure the full scale fire test and heat release rate of bed mattresses according to the building compartment space, a fire test was performed using the Standard test method to determine the heat release rate of mattresses and mattress sets (KS F ISO 12949: 2011). Both test locations showed similar fire growth until approximately 3 minutes after burner ignition. After 3 minutes, the heat release rate in the test room was higher than the open calorimeter. For bed mattresses (SS), the maximum heat release rate in the open calorimeter was 735 kW and the maximum heat release rate in the test room was 992 kW. For bed mattresses (Q), the heat release rate in the test room increased more rapidly than the open calorimeter. The maximum heat release rate in the open calorimeter was 1,087 kW (346 s) and the maximum heat release rate in the test room was 2,127 kW (287 s). The difference between the maximum heat release rate and the measurement time according to the test location was confirmed.

He Study of Fire Suppression Capability of Low Pressure Water-Mist System for Wooden Cultural Properties (목조한옥에 대한 저압식 미분무 소화설비의 소화성능에 관한 연구)

  • Roh, Sam-Kew;Kim, Dong-Cheol;Ham Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2012
  • The study verified the extinguishing performance of the low pressure water-mist system, which is used to extinguish fire at domestic wooden architecture, through a fire test. Made of inflammable materials, a wooden house is vulnerable to fire, and the size of fire may vary from the early stage in case of arson. With the discharging pressure of 8 bar and the flow rate of 35 lpm, the low pressure water-mist nozzle used in the experiment has considerable discharging amount compared to other water-mist nozzles. The extinguishing performance was tested based on the size of fire and architecture. Test results demonstrated that the extinguishing performance was not affected by the size of a house, but decreased significantly when the size of fire was above unit 1. Taking into account that the environment of actual wooden cultural properties is more vulnerable than that of the experiment model, sufficient investigation on extinguishing performance is required to apply the water-mist extinguishing system to wooden architecture.

The Study of Fire Suppression Capability of Sprinkler System for Wooden Cultural Properties (스프링클러 소화설비의 목조문화재 소화성능에 관한 연구)

  • Roh, Sam-Kew;Ham, Eun-Gu;Kim, Dong-Chul
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.51-57
    • /
    • 2011
  • The domestic wooden cultural properties applied to the sprinkler extinguishing system was confirmed extinguishing performance through fire experiments. Consists of wooden cultural properties of a fire, a flammable material is vulnerable in terms of. The scale of fire will occur to vary appearance of the initial fire in case of arson. Sprinkler nozzles of the characteristics, the discharging pressure is 1 bar and the flow rate is 80 lpm, applied in this experiment. Fire performance experiments were tested in two separated in each of the scale of the fire and cultural properties. Fire extinguishing performance test results was low in high ceilings and two or more units of the fire scale. Fire growth environment of the actual wooden cultural properties to experimental models when you consider that it is more vulnerable, sprinkler extinguishing system is required sufficient verification in order to apply fire protection of the wooden cultural properties.