• Title/Summary/Keyword: 초기형상설계

Search Result 365, Processing Time 0.029 seconds

Design & Implementation of Flight Software Satellite Simulator based on Parallel Processing (병렬처리 기반의 위성 탑재소프트웨어 시뮬레이터 설계 및 개발)

  • Choi, Jong-Wook;Nam, Byeong-Gyu
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • The software-based satellite simulator has been developed from the start of the project to resolve the restriction and limitation of using hardware-based software development platform. It enables the development of flight software to be performed continuously since initial phase. The satellite simulator emulates the on-board computer, I/O modules, electronics and payloads, and it can be easily adapted and changed on hardware configuration change. It supports the debugging and test facilities for software engineers to develop flight software. Also the flight software can be loaded without any modification and can be executed as faster than real-time. This paper presents the architecture and design of software-based GEO satellite simulator which has hot-standby redundancy mechanism, and flight software development and test under this environment.

Development of a PTC Heater for Supplementary Heating in a Diesel Vehicle (디젤 차량의 보조 난방을 위한 PTC 히터 개발)

  • Shin, Yoon Hyuk;Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.666-671
    • /
    • 2014
  • Using positive temperature coefficient (PTC) heater as supplementary heating for diesel engine vehicles with low heat source is a good method to enhance the heating performance during cold start. In this study, the PTC elements were made by using screen printing process for forming ohmic contact layer, and prototype of PTC heater was designed and made for a diesel engine vehicle. In process of designing the PTC heater, the thermal flow analysis of PTC element modules was conducted for verifying the effect of the shapes of contact surface between each of the components (cooling fin, insulator, ceramic element). We also investigated the performance characteristic (heating capacity, energy efficiency, pressure drop) of the PTC heater through the experiments. Therefore, the experimental results indicated that prototype of PTC heater had satisfactory performance. This study will be basis for improving the manufacturing process and increasing the performance of the PTC element and heater.

Analysis of Resonant Characteristics in High Voltage Windings of Main Transformer for Railway Vehicle using EMTP (EMTP를 이용한 철도차량용 주변압기 고압권선의 공진특성 분석)

  • Jeong, Ki-Seok;Jang, Dong-Uk;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.436-444
    • /
    • 2016
  • The primary windings of the main transformer for rolling stock have several natural frequencies that can occur internal resonance with transient voltages induced on a high voltage feeding line. Factory testing is limited in its ability to determine whether or not transient voltage with various shape and duration can be excitable. This study presents the design of a high voltage windings model and simulation and analysis of the internal resonant characteristics in terms of the initial voltage distribution and voltage-frequency relationship using the electromagnetic transients program (EMTP). Turn-based lumped-parameters are calculated using the geometry data of the transformer. And, sub-models, being grouped into the total number of layers, are composed using a ladder-network model and implemented by the library function of EMTP. Case studies are used to show the layer-based voltage-frequency relationship characteristics according to the frequency sweep and the voltage escalation and distribution aspects in time-domain simulation.

Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization (유전자 프로그래밍과 개체군집최적화를 이용한 픽 커터의 절삭비에너지 예측모델)

  • Hojjati, Shahabedin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.651-669
    • /
    • 2018
  • This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.

Thermal Analysis of Heater for Anti-Icing System (방빙 시스템의 히터에 대한 열해석)

  • Kim, Minsoo;Jang, Yunseok;Lee, Seungsoo;Kang, Daeil;Jeong, Yunsoo;Kim, Sungsu;Han, Donggeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.541-548
    • /
    • 2019
  • In this paper, the required amount of heat for an anti-icing system of a Flush Air Data Sensing(FADS) system is predicted. For an efficient prediction during the early stage of a design process, a handbook method is used. A program of which inputs are flight conditions is developed to predict the required amount of heat. A CFD analysis is conducted to compute the water catch efficiency which is one of the core parameters used in the handbook method. Kriging method, one of well-known regression mothods, is utilized to construct a surface contour database to evaluate impingements of droplets. To predict the trajectories of droplets, the database of a flow field around the surface is built using Kriging method as well.

Study on Internal Ballistic Performance Analysis for Single-chamber Dual-thrust Rocket Motors (단일연소관 이중추력 로켓모터의 내탄도성능 분석법 연구)

  • Kwon, Hyeokmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, study on the internal ballistic analysis method for single-chamber dual-thrust rocket motors meeting a dual-thrust profile requirement by tailoring the grain burning area is presented. The analysis method, which can acquire variables required for the performance prediction, considering gradual change of burning rate correction factor and specific impulse in the transition phase, is proposed. Improvements compared to the analysis method in the previous study, which do not consider change in the transition phase, are verified through comparison between the newly proposed method and the method in the previous study. Internal ballistic variables are obtained for four different ground firing test conditions using the proposed method, and the performance prediction for each condition is conducted using these variables. These prediction results and the ground test data are in good agreement, so it is confirmed that the performance prediction of dual-thrust motors with same design geometries based on the proposed analysis method is available.

Erection Sequence Analysis of Suspension Bridge Considering to Sliding of Main Cable (주케이블의 슬라이딩을 고려한 현수교의 시공단계 해석)

  • Yhim, Sung-Soon;Kong, Min-Sik;Kim, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.164-172
    • /
    • 2009
  • Anchors and saddles are used to have sufficient geometrical rigidity and make target configuration of main cable of suspension bridge. Neglecting the sliding effect at saddles, points at them have been idealized as fixed nodes in lots of former studies. In general, sliding effects are reported to show significant structural behaviors of main cable and cause to the different responses of bridges. During early erection steps of the suspension bridge, especially, the sliding effect occurs easily because there is large difference of cable tension between main and side span in removing set-back ropes or not applying set-back. This study presents the finite element analysis considering to cable sliding effect and shows the comparison of differences between sliding and non-sliding at election sequence. The analysis of sliding between main cables and saddles needs to obtain more realistic responses because the analysis result can represent unfavorably different responses of bridges. Moreover, the sliding analysis method and results in this study can be used to basic criteria in engineering design and construction steps.

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

DC Electric Field Characteristics considering Thermal Effect for HVDC Slip-on Type Outdoor Termination (HVDC 슬립 온형 기중 종단접속함에 대한 열 영향 반영 DC 전계 특성 평가)

  • Kwon, Ik-Soo;Hwang, Jae-Sang;Koo, Jae-Hong;Sakamoto, Kuniaki;Lee, Bang-Wook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • A outdoor termination installed at the outdoor substation is required to connect undergroud cables and overhead transmission lines. The joint box for AC transmission system is already developed and widely used to interconnect overhead and undergroud systems. But the development of the joint box for DC transmission system was only introduced from China and Japan, but theire developemnt staus and core technologies were not fully reported. In order to implement HVDC systems connecting ovehead transmission lines and undergroud cables, a outdoor termination should be developed, but the detailed specifications and information of this device were not reported. It is estimated that the development of the joint box for DC environment has some technical obstacles including insulating materials, electric field mitigation, thermal temperature rise, and space charge accumuations. Among this, the most important one is the DC elctrical insualtion design. Therefore, in order to investigate the DC elctrical insualton design of outdoor termination, the design of AC slip-on type outdoor termination is reffered, and DC electric field analysis performed to verify the possiblity of application of AC joint box into DC joint box. Especially for DC electric field analysis, temperature rise of insualting materials of a joint box was considered, because the conductivity of materials could be changed due to temperature rise. Furthermore, DC electric field analysis considering transinet state, and polarity reversal state were also investigated to verify which state is the most severe condition for the DC joint box. From the simualtion resulsts, it was shown that the value and the position of maximum electric field was obtained comparing AC state, DC state without temperaure rise, and DC state with temperaure rise. And it was confimred that severe DC electric field was observed considing temperaure rise. Finally, in order to reduce DC eletric field intensifation, different configuration of the joint box was applied and it was not possible to obtain satisfactory results. It means that the slight change of configuration of AC joint box was not the suitable soluton for DC joint box. It is essential to establish novel DC insulaton design skills and method for DC joint box to commercialze this product in the near future.

Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • The present study focused on the structural performance of newly developed prefabricated composite columns (PSRC composite column) using bolt-connected steel angles. Concentric axial loading tests were performed for four 2/3 scaled PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and width-to-thickness ratio of steel angles. The test results showed that the axial load-carrying capacity and deformation capacity of the PSRC column specimens were comparable to those of the conventional SRC column specimens. Closely spaced steel plates and Z-shaped steel plates for lateral reinforcement increased the deformation capacity of the PSRC column specimens. The load-carrying capacity was greater than the prediction by current design codes. Numerical analysis was performed for the specimens. The results agreed well with the test results in terms of initial stiffness, load-carrying capacity, except for strength degradation due to cover concrete spalling.