• Title/Summary/Keyword: 초기하중

Search Result 923, Processing Time 0.03 seconds

정지궤도 복합위성 개념 설계

  • Kim, Chang-Ho;Kim, Gyeong-Won;Kim, Seon-Won;Im, Jae-Hyeok;Kim, Seong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.168.2-168.2
    • /
    • 2012
  • 위성체가 발사체에 실려 발사될 때에 매우 높은 가속도에 의한 정적, 동적 하중 및 공기의 저항에 의한 하중, 연소 가스 분출시 발생하는 음향에 의한 하중, 발사체로부터 분리될 때 발생하는 충격 하중 등 여러 가지의 극심한 하중을 겪게 된다. 이러한 발사 환경에 대한 안정성을 검토하기 위해 발사체 업체에서 제공하는 매뉴얼 상의 설계 조건을 이용하여 설계하고 해석하여 검증한다. 천리안 위성의 후속 위성으로, 해상도 및 채널 성능 향상된 차세대 기상탑재체를 탑재하고 현재 개발 중인 정지궤도 복합위성에 대해 발사환경을 고려한 개념 설계 및 초기 해석을 수행하였고, 개발 가능성 분석을 그 목적으로 한다.

  • PDF

A study on behavioral characteristics of concrete lining based on the equations of relaxed rock loads (이완하중 산정식에 따른 콘크리트라이닝 거동특성에 관한 연구)

  • Kim, Sang-Hwan;Park, Inn-Joon;Moon, Hoon-Ki;Shin, Yong-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.443-450
    • /
    • 2010
  • A concrete lining of NATM tunnel had been considered as interior materials. But recently we consider it as structural materials. Therefore we must consider various loads. Relaxed rock load is a main load which decides thickness and reinforcement presence of concrete lining. In practice conservatively, Terzaghi's rock load theory has been accepted to estimate relaxed rock loads in urban subway tunnel design. This study investigates the equations of relaxed rock loads used in the design of NATM concrete lining. Structural analysis are executed based on various equations of relaxed rock loads, and concrete lining forces are compared.

Two Dimensional Elasto-plastic Stress Analysis by the B.E.M. (경계요소법에 의한 2차원 탄소성응력해석)

  • 조희찬;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.621-629
    • /
    • 1992
  • This study is concerned with an application of the Boundary Element Method to 2-dimensional elastoplastic stress analysis on the material nonlinearities. The boundary integral formulation adopted an initial stress equation in the inelastic term. In order to determine the initial stress increment, the increment of initial elastic strain energy due to elastic increment in stressstrain curve was used as the convergence criterion during iterative process. For the validity of this procedure, the results of B.E.M. with constant elements and NISA with linear elements where compared on the thin plate with 2 edge v-notches under static tension and the thick cylinder under internal pressure. And this paper compared the results of using unmedical integral with the results of using semi-analytical integral on the plastic domain integral.

Post-buckling Behaviour of Aluminium Alloys Rectangular Plate Considering the Initial Deflection Effect (초기 처짐 영향을 고려한 알루미늄 합금 사각형 판의 좌굴 후 거동)

  • Oh, Young-Cheol;Kang, Byoung-Mo;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.738-745
    • /
    • 2014
  • In this paper, It is performing to the elastic and elasto-plastic large deformation series analysis using a numerical method for the initial deflection effect of the aluminum alloy rectangular plate in the elasto-plastic loading area patch loading size. It is assumed a boundary condition to be a simply supported condition and consider the initial deflection amplitude, aspect ratio. It examined the critical elastic buckling load and post-buckling behaviour of aluminium alloy A6082-T6 rectangular plate. It used a commercial program for the elastic and elasto-plastic deformation series analysis. If the initial deflection amplitude is smaller, the in-plane rigidity with increasing to load is reduced from the start and occurs significantly more increasing the amplitude. More higher the aspect ratio, the initial yield strength is gradually decreased, and the plate thickness thicker and occurs larger than the thin walled plate a reduction ratio of the initial yield strength of the patch loading size as 0.5.

Instantaneous Compliance and Creep Compliance functions of Early-Age Concrete under Quasi-Instantaneous Loading (준-순간 하중에 의한 초기재령 콘크리트의 순간 및 크리프 컴플라이언스 함수)

  • Oh Byung-Hwan;Choi Seong-Cheol;Park Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.11-18
    • /
    • 2005
  • In order to accurately assess the stresses occurring in the early-age concrete, a compliance function which can consider the characteristics of early-age concrete is required. Existing compliance functions, however, have the limit that they have been deduced from the data of hardened concrete and therefore, do not take into account the fast development of material properties in early-age concrete. Furthermore, the distinction between instantaneous compliance and creep compliance is not clear in the existing experimental method. The purpose of present study is to propose a compliance function which can describe the rapid change of hardening processes in early-age concrete. To this end, a test method which can estimate the instantaneous compliance without creep effects in the early-age concrete was suggested first. Based on the suggested experimental method, tests on the instantaneous as well as creep compliance were performed using MTS automatic servo-loop test machine. The test results showed that both instantaneous and aging viscoelastic compliance, which are constants in B3 model, were functions in terms of age of concrete especially at early ages. Therefore, the modified compliance function based on B3 model was proposed to provide more realistic prediction on the behavior of early-age concrete. It is expected that the present model allows more realistic evaluation of varying stresses in concrete structures at early ages.

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

Characteristics of Load-Settlement Behaviour for Embeded Piles Using Load-Transfer Mechanism (하중전이기법을 이용한 매입말뚝의 하중-침하 거동특성)

  • Oh, Se Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.51-61
    • /
    • 2001
  • A series of model tests and analyses by load transfer function were performed to study load-settlement behaviour with relative compaction ratio of soil and embeded depth of pile. In the model tests, embeded depth ratio(L/D) of pile were installed 15, 20, 25 and relative compaction of soil(RC) is 85%, 95% and then cement were injected at around perimeter of pile. For analysis of embedded pile, the paper were compared results of model tests with analysis results by Vijayvergiya model and Castelli model, Gwizdala model of elastic plasticity-perfect plastic model and then the fitness load transfer mechanism was proposed to predict load-settlement behaviour of embeded pile. The analysis results of predicted bearing capacity by load transfer function, ultimate bearing capacity of embeded pile were approached to measured value and behaviour of initial load-settlement curve were estimated that load transfer function by Castelli were similar to measured value. The result of axial load analysis of bored pile shows that skin friction estimated by load transfer mechanism is investigated more a little than that of measured values.

  • PDF

A study on asymmetric load on circular shaft due to engineering characteristics of discontinuous rock masses (불연속암반의 공학적 특성에 따른 원형수직구 편하중에 관한 연구)

  • Shin, Young-Wan;Moon, Kyoung-Sun;Joo, Kyoung-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • In the case of a circular shaft, it is expected that asymmetric loads should apply on the surface rather than symmetric loads due to geographical factors and the non-homogeneity of the jointed rock masses. In this study, discontinuous numerical analysis was carried in order to analyze the characteristics of asymmetric load distribution on the wall of the circular shaft due to anisotropy caused by heterogeneity of rock masses affected by the discontinuities like as a Joint. And it was also analyzed that the effect of the mechanical properties varied with the rock mass rating and horizontal stress with depth had influence in the asymmetric load on the wall of the shaft. In the case of considering the effect of the joint as variable, asymmetric load ratio $(R_p)$, which was defined as the ratio of the load subtracted minimum from maximum to minimum, was below 25% in the hard rock. As regarding the variation of the rock mass rating with depth as variable, the value of $R_p$ was below than 25% in the hard rock, and the value between 30% and 40% in the soft rock. On the other hand, the $R_p$ of fractures rock was between $45{\sim}50%$ which value was much higher than that in better rock mass rating.

  • PDF

Analysis of Lateral Behavior of PSC Bridge Girders under Wind Load During Construction (시공 중 풍하중에 의한 PSC 교량 거더의 횡방향 거동 해석)

  • Lee, Jong-Han;Kim, Kyung Hwan;Cho, Baiksoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.377-385
    • /
    • 2015
  • The span-lengthening of PSC I girder has increased the risk of lateral instability of the girder with the increases in the aspect ratio and self-weight of the girder. Recently, collapses of PSC I girder during construction raise the necessity of evaluating the lateral instability of the girder. Thus, the present study evaluated the lateral behavior and instability of PSC I girders under wind load, regarded as one of the main causes of the roll-over collapse during construction. Lateral instability of the girder is mainly dependent on the length of the girder and the stiffness of the support. The analysis results of this study showed the decrease in the critical wind load and the increase in the critical deformation and angle of the girder, leading to the lateral instability of the girder. Finally, this study proposed analytical equations that can predict the critical amount of wind load and lateral deformation of the girder, which would provide quantitative management values to maintain lateral stability of PSC I girder during construction.

A study on the GEO Satellite Tank Support Beam Form Definition at Preliminary Design (초기설계단계의 정지궤도위성 연료탱크 지지대 형상결정에 대한 연구)

  • Choi, Jung-Su;Kim, In-Gul;Kim, Sung-Hoon;Park, Jong-Seok;Kim, Chang-Ho;Yang, Gun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • Launch Interface Ring roles as connection department of satellite and launcher for to deliver all structure loads that occur from the satellite, and one of the most intensive load received parts. Especially COMS, the first Korean developing GEO satellite, needs Launch Interface Ring with Tank Support Beam because of dissymmetry fuel tanks. The purpose of this study is the suitable form decision of Launch Interface Ring at preliminary design of COMS. In this study, launch mass and design constraints are investigated. Moreover, optimization algorithm and simplification technique are used. At the beginning of this study, three types of launch interface ring were presented and finally model 3 was the lightest design for resistance of launch environment. Nevertheless, model 1 can be suggested for application to COMS because of the satellite gravity center control and ease of fabrication.