• Title/Summary/Keyword: 초기양생 콘크리트

Search Result 165, Processing Time 0.025 seconds

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

Influence of Curing Conditions on Volumetric Changes in Concrete (양생 조건이 콘크리트의 체적 변화에 미치는 영향)

  • Lee, Kwang-Myong;SunWoo, Joo-Yeun;Lee, Hoi-Keun;Khayat, Kamal H.
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.331-338
    • /
    • 2006
  • This paper presents the experimental results on volumetric changes in ordinary portland cement concrete made with various water-to-cement ratios(W/C's) ranging from 0.32 to 0.50 and cured in low different conditions. Curing regimes employed in this work were designed to exhibit autogenous and drying shrinkage as well as swelling of concrete. The concrete avoided any moist evaporation(Regime f showed only autogenous shrinkage and the lower the W/C, the feater the autogenous shrinkage. The concrete exposed to air drying conditions at $20{\pm}1^{\circ}C$ and $60{\pm}3%$ RH after 6-day water curing at $20{\pm}1^{\circ}C$(Regime II) swelled and then started to shrink. The maximum swelling value of concrete developed in water curing was between 15 and $40{\pm}10^{-6}$, and the greatest total shrinkage(autogenous+drying shrinkage) was obtained for the mixture made with W/C of 0.32. The concrete let to air drying conditions(Regime III) showed greater total shrinkage compared to the concrete cured in Regime II. The concrete exposed to air drying condition after 6-day sealed curing(Regime IV) exhibited slightly smaller total shrinkage than that of the concrete cured in Regime III. Net drying shrinkage that can be derived from the results of Regime I, III, and IV increased as the W/C increased despite of similar total shrinkage. This result indicated that drying shrinkage governs total shrinkage of high-W/C concretes. In other words, a portion of autogenous shrinkage in total shrinkage increased in low-W/C concretes. Therefore, it should be controlled in terms of cracking potential. Finally, total shrinkage of high-strength and high-performance concrete made with low W/C can be effectively reduced by appropriate early moisture curing.

Effect of Curing Conditions on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (양생조건에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yong-Cheol;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.909-912
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. But SHCC has serious problem as drying shrinkage because silica powder is used to make SHCC in order to improve bond strength between reinforcing fibers and cement matrix. Therefore, curing method (period and temperature) is very important for SHCC to show high tensile performance. a variety of experiments have being performed to access the performance of SHCC recently. This research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA), Polyethylene (PE) fibers and steel cord (SC), and how curing method affects the composite property, and ultimately its strain-hardening performance.

  • PDF

Effect of Steam Curing on Compressive Strength of Slag Binder Concrete (증기양생이 고로슬래그 콘크리트의 압축강도에 미치는 영향)

  • Lim, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.338-343
    • /
    • 2017
  • In this study, blast furnace slag powder was used in concrete to help reduce carbon dioxide emissions and to recycle industrial waste. Blast furnace slag powder is a byproduct of smelting pig iron and is obtained by rapidly cooling molten high-temperature blast furnace slag. The powder has been used as an admixture for cement and concrete because of its high reactivity. Using fine blast furnace slag powders in concrete can reduce hydration heat, suppress temperature increases, improve long-term strength, improve durability by increasing watertightness, and inhibit corrosion of reinforcing bars by limiting chloride ion penetration. However, it has not been used much due to its low compressive strength at an early age. Therefore, this study evaluates the effects of steam curing for increasing the initial strength development of concrete made using slag powder. The relationship between compressive strength, SEM observations, and XRD measurements was also investigated. The concrete made with 30% powder showed the best performance. The steam curing seems to affect the compressive strength by destroying the coating on the powder and by producing hydrates such as ettringite and Calcium-Silicate-Hydrate gel.

Flow and Compressive Strength of Slag Mortars Activated by $MgNO_3$ ($MgNO_3$에 의해 활성된 슬래그 모르터의 유동성과 압축강도)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.299-300
    • /
    • 2010
  • Flow and compressive strength of slag mortars activated by $MgNO_3$ were measured to examine the significance and limitation for the use of Mg-ion as an alkali-activator. The compressive strength of mortars tested was significantly dependent on the addition amount of $MgNO_3$, showing that 30~60% higher strength was developed in water-cured mortars than in air-cured mortars.

  • PDF

Comparison of Standard Specification for the Curing of Cold Weather between Korea and China (한국과 중국의 한중 콘크리트 표준시방서의 보온양생 규정 비교)

  • Hu, Yun-Yao;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.131-132
    • /
    • 2023
  • In this paper, standard specification of heat curing section of cold weather concrete between Korea and China were compared. First, Korea concrete specification (KCS 14 20 40) stipulates that the application period is less than 4℃ per day or less than 0℃ per day right after pouring, but in China, the outdoor daily average temperature is less than 5℃ for five consecutive days. This is believed to be due to the difference in temperatures between Korea and China in winter. Next, in the case of Korea, KCS do not show that the concrete temperature in curing should be 5℃ or higher to prevent early frost damage and obtain the minimum required compressive strength. On the other hand, in the case of China, the specificaion does not show that the curing method is selected based on the concrete surface coefficient after considering the outdoor temperature. In addition, in Korea and China regulation, the temperature of the space during thermal curing was shown to be similar.

  • PDF

Strength Properties of Concrete According to Types of High Early Strength Cement and Curing Method (조강형 시멘트의 종류 및 양생방법에 따른 콘크리트의 강도특성)

  • Chang, Chun-Ho;Lee, Wang-Sup;Jung, Yong-Wook;Chung, Youn-In
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.76-84
    • /
    • 2017
  • This study selected a method which uses high early strength cement as a way to reduce the curing time and curing energy source of concrete secondary products and reviewed the improvement in the initial strength of concrete secondary products setting the target strength of the concrete capable of removing the form to 15MPa and the curing time to 6 hours. As a result of the test, the only specimen which achieved the form removal strength of 15 MPa only through atmospheric curing within the target curing time of 6hours was ACC-100, and the specimens of TRC-100 and TRC-50 satisfied the values of 6 hours and 15MPa through steam curing. However, we could see that it was difficult to secure workability in the case of the specimen of ACC-100 due to its high rapid setting property and a retarder such as anhydrous citric acid was required to be used to improve the workability. When we look into the pattern following changes in the water to binder ratio, while, in the case of stream curing, OPC-100, TRC-100, and TRC-50 were all found to satisfy achievement of the form removal strength within 6hours as the water to binder ratio decreased, in the case of atmospheric curing, TRC-100, and TRC-50 achieved 15MPa within 12hours.

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect (양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정)

  • Choi Myoung-Sung;Kim Yun-Yong;Woo Sang-Kyun;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.551-558
    • /
    • 2005
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.

Fundamental Properties of Alumina Cement Mortar by Insulation Curing Method under Low Temperature (저온환경에서 알루미나시멘트를 사용한 모르타르의 단열양생에 따른 기초물성 평가)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.419-427
    • /
    • 2017
  • In order to examine the possibility of practical use of aluminate cement concrete at low-temperature environment with insulation method, an experimental studies on flowability, setting time, freezing temperature, size variation and compressive strength of the mortar at low-temperature were conducted. Compressive strength was increased in use of CSA, aluminate cement with gypsum. Workability and physical properties were improved by using aluminate cement and gypsum. In addition, freezing resistance and physical properties were improved by applying the insulation curing method. Especially, when alumina cement and gypsum were used together, the insulation curing method was more effective in improving the compressive strength.