• Title/Summary/Keyword: 초기양생기간

Search Result 34, Processing Time 0.026 seconds

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

The experimental investigation for the curing condition deduce of the Polymer concrete manhole (폴리머 콘크리트 맨홀의 양생 조건 도출을 위한 실험적 고찰)

  • Kim, Dong-Hun;Han, Jin-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.545-548
    • /
    • 2008
  • 불포화 폴리에스테르 수지를 결합재로 사용하여 제작되는 폴리머 콘크리트 맨홀은 조기 고강도 발현, 접착성. 수밀성, 내동결융해성, 내약품성, 내마모성, 전기절연성이 우수하여 프리캐스트로 제작되는 많은 통신용 맨홀에 적용되고 있다. 폴리머 콘크리트의 결합재로 사용되는 불포화 폴리에스테르 수지는 열경화성수지로써, 자체 발열에 의해 거푸집을 탈형할 정도의 초기 경화 반응이 나타나지만, 구조물로서 요구되는 소요 강도를 발휘하기 위해서는 적정 온도에 의한 추가 양생이 반드시 필요하다. 이에 본 논문에서는 폴리머 콘크리트의 휨 강도 시험용 공시체를 사용하여, 다양한 양생 온도 조건 및 양생기간에 따른 휨 강도를 측정하였으며, 이를 가열 촉진 양생에 의한 휨 강도와 비교하여 콘크리트가 소요 강도를 발휘하는데 요구되는 적정 온도와 기간을 도출하였다. 이를 통해 폴리머 큰크리트 맨홀의 품질 확보를 위한 생산 관리와 제품 검사를 체계적이고 효율적으로 수행할 수 있도록 하였다.

  • PDF

라이닝콘크리트의 양생시스템 개선

  • Yu, Yeong-Seon;Kim, Yong-Ha;Mun, Byeong-Tak;Lee, Hyeon-Gu;Gwon, Gi-Hwal;Im, Ju-Yeong
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 2011
  • 양북터널은 굴착과 동시에 라이닝콘크리트를 타설하였다. 터널굴착과 라이닝콘크리트의 동시시공을 위한 적정시공 Cycle을 결정하고, 이에 따른 양생기간과 양생온도를 설정하는 순으로 시험하였다. 라이닝콘크리트는 품질관리를 위해 보온장치를 탑재한 Sliding form과 양생대차를 운영하고, 균열을 최소화하기 위해 양생온도와 양생시간 및 탈형강도 등을 시험에 의해 결정하였다. 시험과정은 터널내부와 라이닝콘크리트 내부온도를 계절별로 측정하고, 양생온도별로 콘크리트의 강도를 측정하였다. 거푸집 탈형시 콘크리트 온도가 터널내부의 온도로 수렴하기까지는 $15{\sim}20^{\circ}C$의 차이로 측정되었고, 거푸집 탈형을 위한 콘크리트 초기강도 4MPa을 발현하는데는 양생온도에 따라 차이가 발생하지만 시공 Cycle에 적합한 양생시간은 약 20시간이고, 이 때의 양생온도는 $23^{\circ}C$ 이상이었다. 위의 시험결과대로 현장에서 라이닝콘크리트를 양생한 결과 시공 Cycle과 압축강도 및 콘크리트면의 외관 등이 만족한 결과를 나타내었다.

  • PDF

Change in compressive strength of lightweight geopolymers after immersion (침지 후 경량 지오폴리머의 압축강도 변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.174-181
    • /
    • 2021
  • Lightweight geopolymers were fabricated by using IGCC (integrated gasification combined cycle) slag and Si sludge which are classified as general wastes (recyclable resources). Three curing methods were tried to investigate the changes in compressive strength and density according to the curing method and immersion time. Immersion period was tried up to 21 days to observe long-term performance in water. Compressive strength of the specimens cured in oven decreased abruptly with an increase in immersion time. Compressive strength of the specimen cured in autoclave was low after 3 and 7 day immersion; however, increased rapidly after 21 day immersion. On the contrary, compressive strength of the specimen cured in autoclave and oven was high but substantially decreased after 21 day immersion. Conclusively, it was speculated that oven curing is effective for the compressive strength development at early age; however, autoclave curing is more desirable for the long-term performance in water.

Experimental Study on the Evaluation of frost-Resistance of High-Strength Concrete Damaged by frost at Early Age in Cold Climates (동절기 초기재령에서 동해를 받은 고강도콘크리트의 내동해성 평가에 관한 실험적 연구)

  • 권영진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2001
  • One of ways to make high-strength concrete is for the mix contain particles graded down to the finest size : this is achieved by the use of fly ash, silica fume which fills the spaces between the cement particle and between the aggregate and the cement particles. And, the mix needs a sufficient workability. This is achieved by the use of a superplasticizer. This study is to investigate frost resistance of high-strength concrete at early age, with ratio of tensile strength and recovery of compressive strength, when high-strength concrete is placed in cold climates. According to this study, it is necessary to ensure 4 % of air content, 5 kgf/$\textrm{cm}^2$ of tensile strength, at least, for frost resistance of high-strength concrete at early age.

Strength Characteristics of Concrete Subjected ta Vertical Continuous Vibration during Initial Curing Period (초기양생 중에 수직방향 연속진동을 받은 콘크리트의 강도특성)

  • Kim Jong-Soo;Jang Hee-Suk;Kim Myung-Sik;Kim Hee-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.273-297
    • /
    • 2005
  • In construction site, there are some occasions where concrete under initial curing is being affected by nitration from nearby vibration sources. To study these effects, in this paper, strength characteristics of concrete specimens subjected to continuous vibration up to 12 hours in vertical direction after concrete placement were observed. And through the vibration time control experiment where a number of time combinations consisted of times before and after applying vibration during initial curing period were used as experimental parameters, possibility of concrete strength improvement was investigated. From the experimental results, it could be seen that the concrete strengths were mostly decreased due to the increase of vibration velocity during initial curing period. But fluctuation ratio of concrete strength did not have any close correlations with the vibration times. And results of vibration time control experiment showed that if times before applying vibration sustains at least more than 3 hours, subsequent vibrations after that hours do not affect the concrete strength in any unfavorable ways.

Mixture Study for Early-age Strength Improvement of NAC-typed High-strength Concrete Piles (NAC 방식 고강도 콘크리트 파일의 초기강도증진을 위한 배합에 대한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Due to the influence of global oil prices, industrial productivity, which oil consumption is high, was significantly reduced. AC type of high-strength PHC piles is being manufactured through twice the steam curing process and this have resulted in a significant rise for product's manufacturing costs. NAC way other types of file manufacturing process has the advantage of reducing manufacturing costs by a turn of the steam curing. Nevertheless, because the initial strength be poor than that of AC method, shipment is being after the curing period of approximately three days. In addition, the growth of the product enhance with curing period can not be avoided, as a result, cost of inventory is acting as the rise. Piles by the AC method is immediately shipped after curing, damaging problems does not occur when they are introduced to the field site (for example, pile on-site). In the case of NAC, however, at least after the curing period of three days and after expressing the strength of 80 MPa or more, they are shipped on the scene. Therefore, NAC type has problems as follows: (1) increase in moderate inventory holding costs with type and (2) breakage in the field due to lack of strength. In this study, for NAC-typed PHC files, mixing characteristics research for the strength development at 1 day equivalent to AC method were conducted and strength characteristics with changes of original materials were evaluated were also identified.

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Freezing at Early Age (초기재령에서 동결을 받은 고로슬래그 콘크리트의 강도발현특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun;Choi, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • Recently, to consider financial and constructive aspect usage of Admixture such as Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-Furnace Slag, a by-product of steel industry, have many advantage to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. The factors of this experience to give early frost damaged were Freezing temperature(-1, -10, $-15^{\circ}C$), Early curing age(0, 12, 24, 48hour), Freezing times(0, 12, 24, 48hour). According to this study, if early curing is carried out before haying frost damage, the strength of concrete used admixture, subjected to frost damage, is recovered. And that properties are considered, the effect of using admixture like blast-furnace-slag, is very high

Influence of Sulfate on the Early Hydration in the Solidification of Lime-tailings (소석회-광물찌꺼기 고형화의 초기 수화에 미치는 황산염의 영향)

  • Lee, Hyun-Cheol;Min, Kyoung-Won;Yoo, Hwan-Geun
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.535-544
    • /
    • 2013
  • Influence of sulfate on the early hydration in the solidification treatment of abandoned mine tailings was characterized. Solidified specimens using hydrated lime as a binder were prepared with various amounts of added $Na_2SO_4$ and different curing days. Unconfined compressive strength measurement, heavy metal leaching test, XRD analysis were performed after 7-, 14- and 28-days curing. According to curing days strength of solidified specimens using only distilled water increased but those with addition of $Na_2SO_4$ decreased. External cracks of specimens developed definitely with increasing $Na_2SO_4$ concentration and curing days. Concentrations of Cu, Cd, Zn, and As in the leached solutions from solidified specimens decreased significantly but Pb was leached readily in cases of hydrated lime dosage more than 10 wt%. Gypsum and $MgSO_4$ were identified in the cracked solidified specimens by XRD analysis, and pillar-shaped crystals of SEM image were identified as gypsum in reference with EDS analysis. Crystallization of sulfate in the process of lime-tailing solidification caused cracking, which should be supplemented for solidification treatment of highly sulfur-contained tailing.