• Title/Summary/Keyword: 초기압축응력

Search Result 206, Processing Time 0.022 seconds

Ultimate Compressive Strength-Based Safely and Reliability Assessment of the Double Skin Upper Deck Structure (압축최종강도(壓縮最終强度)를 기준으로한 이중갑판구조(二重甲板構造)의 안전성(安全性) 및 신뢰성(信賴性) 평가(評價))

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.150-168
    • /
    • 1991
  • A practical procedure for the ultimate compressive strength-based safety and reliability assessment of the double skin upper deck structure is described. The external compressive stress acting on the upper deck structure which is due to the still water and wave-induced sagging moment is approximately estimated by using the existing rule of classification society. The ultimate compressive stress of double skin structure under the action of sagging moment is analyzed by using idealized structural unit method. Here an idealized plate element subjected to uniaxial load is formulated by idealizing the nonlinear behaviour of the actual element taking account of the initial imperfections in the form of initial deflection and welding residual stress. The interaction effect between the local and global failure in the structure is also taken into consideration. The accuracy of the present method is verified comparing with the present solution and the existing numerical and experimental results for unit member and welded box columns. The safety of the structure is evaluated using the concept of conventional central safety factor and the reliability assessment is made by using Cornel's MVFOSM method. The present procedure is then applied to upper deck structure of double skin product oil carrier. The influence of the initial imperfections and the yield stress of the material on the safety and reliability of the structure is investigated.

  • PDF

Cyclic Strength Characteristics of Soft Clay (주기적(週期的) 반복하중(反復荷重)에 의한 연약점토(軟弱粘土)의 강도특성(强度特性))

  • Ha, Kwang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.49-58
    • /
    • 1984
  • A series of cyclic triaxial tests were carried out on undisturbed samples to clarify the cyclic behavior of Bangkok(Ransit) soft clay. Based on the test results obtained from the cyclic tests employing different initial shear stress and different confining stress, the cyclic properties of clay such as shear strain development and cyclic strength were investigated. The results showed that with increase in the initial shear stress, the stress-strain curve was flattened to some extent. The cyclic strength expressed by the stress ratio was higher in the test with $1.0kgf/cm^2$ of confining stress, while the cyclic strength expressed by the deviator stress was higher in the test with $1.5kgf/cm^2$ of confining stress.

  • PDF

Numerical Analysis on Stress Distribution of Vertebra and Stability of Intervertebral Fusion Cage with Change of Spike Shape (척추체간 유합케이지의 스파이크형상 변화에 따른 척추체의 응력분포 및 케이지의 안정성에 대한 수치적 해석)

  • 심해영;김철생;오재윤
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.361-367
    • /
    • 2004
  • The axial compressive strength, relative 3-D stability and osteoconductive shape design of an intervertebral fusion cage are important biomechanical factors for successful intervertebral fusion. Changes in the stress distribution of the vertebral end plate and in cage stability due to changes in the spike shape of a newly contrived box-shaped fusion cage are investigated. In this investigation, the initial contact of the cage's spikes with the end plate and the penetration of the cage's spikes into the end plate are considered. The finite element analysis is conducted to study the effects of the cage's spike height, tip width and angle on the stress distribution of the vertebral end plate, and the micromigration of the cage in the A-P direction. The stress distribution in the end plate is examined when a normal load of 1700N is applied to the vertebra after inserting 2 cages. The micromigration of the cage is examined when a pull out load of l00N is applied in the A-P direction. The analysis results reveal that the spike tip width significantly influences the stress concentration in the end plate, but the spike height and angle do not significantly influence the stress distribution in the end plate touching the cage's spikes. In addition, the analysis results show that the micromigration of the cage can be reduced by adjusting the spike angle and spike arrangement in the A-P direction. This study proposes the optimal shape of an intervertebral fusion cage, which promotes bone fusion, reduces the stress concentration in a vertebral end plate, and increases mechanical stability.

Structural Analysis and Design method of Concrete in the IT Era (IT 시대 콘크리트 구조물의 구조해석 및 설계 기법)

  • 김종우;문정호
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • 구조재료로써 콘크리트의 물리적 특성은 강재와는 달리 시간 의존적이라고 할 수 있다. 즉, 타설 후 재령이 경과함에 따라 압축강도와 탄성계수가 증가함은 물론, 콘크리트 내의 수분이 대기 상태로 증발하면서 부재가 수축하는 건조수축 및 외력의 증감없이 변형률이 증가하는 크리프 특성 등을 가지고 있다. 또한, 콘크리트는 시멘트의 수화반응에 의해 시공초기에 재료의 온도가 급격히 상승하는 발열특성도 동시에 가지고 있다. 이러한 특성들은 구조물의 설계시 무시할 수 없으며, 각 시공단계 및 완성단계의 구조물의 응력에 커다란 영향을 미치게 된다.(중략)

A three-dimensional finite element analysis for initial stress of maxillary incisiors during activation of upper utility arch wire (Utility Arch Wire 적용시 상악 중절치 및 측절치의 초기 응력 분포에 관한 3차원 유한요소법적 연구)

  • Lee, Jong-hyun;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.411-424
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution of initial compressive and tensile stress when anterior section of upper utility arch was activated crown lingual torque of $5^{\circ},\;10^{\circ},\;15^{\circ}$ through three-dimensional finite element analysis. For this study the finite element model of upper central and lateral incisors, 1st. and 2nd. premolars and 1st. molars and each periodontal membrane and upper utility arch were made. From the solutions of ANSYS the followings were obtained. 1. $5^{\circ},\;10^{\circ},\;15^{\circ}$ crown lingual torque produce the almost similar distribution and measurement of initial compressive and tensile stress. 2. Acivated upper utility arch torqued central inciors lingually and lateral incisors labially.

  • PDF

Analysis of Dynamic and Static Elastic Modulus of In-situ Marine Concrete (현장 해양 콘크리트의 동탄성계수와 정탄성계수 분석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.437-443
    • /
    • 2009
  • Impact echo method estimating the soundness of concrete measures the dynamic elastic modulus of specimens which are different with static elastic modulus tested by uni-axial compression test. Thus, this paper investigates the relationships between dynamic and static elastic modulus based on in-situ concrete cores. Also, dynamic elastic modulus was compared with compressive strength. Concrete cores were obtained from about 20 to 70 years concrete structures at three different harbors which were Incheon, Wando, and Masan in Korea. In order to investigate the influence of exposure condition on the relationship, air zone, splash zone, and tidal zone were selected. Different harbors showed the different relationships between dynamic and static elastic modulus, but exposure conditions have no influence on the relationship between dynamic and static elastic modulus. Also, the relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The relationship equations were proposed to estimate the relationships properly.

A Characteristics of Shear Strength and Deformation of Decomposed Granite Soil (화강토의 전단강도 및 변형특성)

  • 박병기;이강일
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.177-198
    • /
    • 1997
  • Since decomposed granite soil shows various characteristics of shear behavior dependent on initial conditions such as weathering degree and grain breakage, it is nacessary to invert ligate stress -strain relationship and changes of shear characteristics for different initial conditions. Associated with abovefnentioned view, direct shear tests, and triaxial compression tutsts(Ef, CD) were carried out in this study for undisturbed and disturbed compacted weathered granite samples obtained from 4 construction work sites with the various weathering degree and components of parent rocks. The deformation behavior of undisturbed samples under small confining stress shows hardening to softening, which is similar to that of over nsolidated clay whereas disturbed weathered granite soils do hardeningfonstant regardless of weathering degree, which is also similar to sedimentary clay. Conventional direct shear-tests for undisturbed samples show a tendency to overestimate cohesion. It is possidle to approximate stress ratio(q/p') and volumetric increment ratio(dv/ds) in the triaxital compression tests by an equation, ($dv/d\varepsilon,=\alpha(M-\eta))$ irrespective of moisture content, weathering degree and disturbance.

  • PDF

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

Fracture of Multiple Flaws in Uniaxial Compression (일축압축 상태하 다중 불연속면의 파괴에 대한 연구)

  • 사공명;안토니오보베
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.301-310
    • /
    • 2001
  • Gypsum blocks with sixteen flaws have been prepared and tested in uniaxial compression. Results from these experiments are compared with observations from the same material with two and three flaws. The results indicate that the cracking pattern observed in specimens wish multiple flaws is analogous to the pattern obtained in specimens with two and three flaws such as initiation and propagation of wing, and secondary cracks and coalescence. Wing cracks initiate at an angle with the flaw and propagate in a stable manner towards the direction of maximum compression. Secondary cracks initiate and propagate in a stable manner. As the load is increased, secondary cracks may propagate in an unstable manner and produce coalescence. Two types of secondary cracks are observed: quasi-coplanar, and oblique secondary cracks. Coalescence is produced by the linkage of two flaws: wing and/or secondary cracks. From the sixteen flaws test, four types of coalescence are observed. Observed types of coalescence and initiation stress of wing and secondary crackle depend on flaw geometries, such as spacing, continuity, flaw inclination angle, ligament angle, and steppings.

  • PDF

Slip Behavior of High-Tension Bolted Joints Subjected to Compression Force (압축력을 받는 고장력 볼트 이음부의 미끄러짐 거동)

  • Han, Jin Hee;Choi, Jong Kyoung;Heo, In Sung;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • In this study, the slip behavior of high-tension bolted joints subjected to compression force is investigated through 3D finite element analysis and experiments. The relation with sliding load, bolt deformation, and failure load are studied with the metal thickness affecting the bolted joint. The post-sliding behavior considering bolt stiffness is presented and compared with the results by finite element and experiments. The finite element model is constructed by solid elements in ABAQUS, in consideration of all the friction effects between metal plates and bolts. The stress-strain relations in the literature are used, and the sliding displacements and axial stresses around the bolt connection are investigated. The flexural buckling of species happened when the plate thickness is less than the bolt diameter. However, the shear failures of bolt occurred in the opposite case.