• Title/Summary/Keyword: 초기변형율

Search Result 129, Processing Time 0.028 seconds

Effect of Internal Curing by Super-Absorbent Polymer (SAP) on Hydration, Autogenous Shrinkage, Durability and Mechanical Characteristics of Ultra-High Performance Concrete (UHPC) (고흡수성 수지(SAP)를 이용한 내부양생이 초고성능 콘크리트(UHPC)의 수화반응, 자기수축, 내구성 및 역학적 특성에 미치는 영향)

  • Kang, Sung-Hoon;Moon, Juhyuk;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.317-328
    • /
    • 2016
  • This research intends to understand the impact of super-absorbent polymer (SAP) as an internal curing agent in Ultra-High Performance Concrete (UHPC). Two different types of SAPs of acrylic acid (SAP_AA) and acrylic acid-co-acrylamide (SAP_AM) were examined with UHPC formulation. Isothermal calorimetry and x-ray diffraction experiments revealed the impact of polymers with the different chemical bonds on cement hydration. To test its feasibility as a shrinkage reducing admixture for UHPC, a series of experiments including flowability, compressive strength, rapid chloride permeability and autogenous shrinkage profile was performed. While both SAPs showed a reduction in autogenous shrinkage, it has been concluded that the SAP size and chemical form significantly affect the performance as an internal curing agent in UHPC by controlling cement hydration and porosity modification. Between the tested SAPs, SAP_AM which absorbs more water in UHPC than SAP_AA, shows better mechanical and durability performance.

EARLY TREATMENT OF THE POSTERIOR CROSS-BITE: A CASE REPORT (구치부 반대교합의 조기치료에 대한 치험례)

  • Lee, Eun-Mi;Kang, Dong-Kyun;Kim, Tae-Wan;Kim, Young-Jin;Nam, Sun-Hyun;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.357-366
    • /
    • 2008
  • Posterior cross-bite is a relatively frequent malocclusion in primary and early mixed dentition and the reported prevalence of posterior cross-bite varies from 7% to 23%. It has been defined as a transverse discrepancy in arch relationship which the palatal cusp of the upper posterior teeth do not occlude in the central fossa of the opposing lower teeth, and can be manifested in a single tooth or in a group of teeth. Posterior cross-bite does not often self-correct and therefore immediate treatment is recommended. Occlusal adjustment to eliminate premature contact that causes mandibular deviation, expansion of narrow maxillary arch, arrangement of the individual teeth to treat asymmetry within the dental arch are the methods of treating cross-bite. In the present case, functional posterior cross-bite was observed in the primary and the early mixed dentition children. The children were treated by the slow maxillary expansion and occlusal adjustment. The outcome of periodic examinations after the correction of cross-bite was favorable.

  • PDF

Effects of Expansive Admixture on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (팽창재 치환율에 따른 섬유보강 시멘트 복합체의 역학적 특성)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.617-624
    • /
    • 2010
  • This paper reports on a comprehensive study on the mechanical properties of expansive fiber-reinforced strainhardening cement composite (SHCC) materials containing various replacement levels (0, 8, 10, 12 and 14%) of an expansive admixture and 1.5% polyethylene (PE) fibers volume fraction. A number of experimental tests were conducted to investigate shrinkage, compressive strength, flexural strength, and direct tension behavior. Test results show that as expected, the different replacement levels of an expansive admixture have an important effect on the evolution of the free shrinkage of SHCC with a rich mixture. At the volume fraction of 1.5%, PE fibers in normal SHCC reduce free shrinkage deformation by about 30% in comparison to plain mortar. The replacement of an expansive admixture in SHCC material has led the SHCC to a better initial cracking behavior. Enhanced cracking tendency improved mechanical properties of SHCC materials with rich mixtures. Note that an increase in the replacement of expansive admixture from 10% to 14% does not lead to a significant improvement for mechanical properties; this implies that the replacement of 10% expansive admixture is sufficient.

Resistance Curves of Concrete CLWL-DCB Specimens (콘크리트 CLWL-DCB 시험편의 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.357-364
    • /
    • 2002
  • The resistance curves (R-curves) for 381 m crack extension of CLWL-DCB specimens had been determined. The average velocities of the crack extension measured with strain gages were 0.70 and 55 ㎜/sec. The measured rotation angle of the notch faces showed the existence of the singularity at least before 171 and 93 mm crack extensions for the 0.70 and 55 ㎜/sec crack velocities, respectively. The maximum slopes of the R-curves occurred between 25 and 89 ㎜ crack extensions for 0.70 ㎜/sec crack velocity and between 51 and 127 ㎜ crack extensions for 55 ㎜/sec crack velocity During the maximum slopes of the R-curves, the micro-crack localization can be expected, and faster crack velocity may form longer micro-cracking and micro-crack localizing zones. The fracture resistance of 0.70 ㎜/sec crack velocity reached a roughly constant maximum value of 143 N/m at 152 ㎜ crack extension, while that of 55 ㎜/sec crack velocity increased continuously to 245 N/m at 254 ㎜ crack extension and then decreased to the value of 0.70 ㎜/sec crack velocity. The R-curve of 55 ㎜/sec crack velocity was similar to that of the small size three-point bend test, and it showed that small size specimen or fast crack velocity could cause more brittle behavior.

다양한 활성제 이온이 치환 고용된 MgNb2O6 형광체의 특성

  • Kim, Ji-Seon;Jo, Sin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.167-167
    • /
    • 2013
  • 최근에 산화물 형광체는 황화물 형광체에 비해 높은 화학적 안정성을 나타내기 때문에 백색 발광 다이오드, 전계방출 디스플레이와 플라즈마 디스플레이 패널에 그 응용성을 넓히고 있다. 마그네슘 니오베이트(magnesium niobate, MgNb2O6)는 우수한 유전 특성(상대 유전상수=18.4)을 나타내기 때문에 마이크로파 유전체로 응용 가능하며, 단일상 릴랙서 페라브스카이트(relaxor perovskite) Pb(Mg1/3Nb2/3)O3을 합성하기 위한 전구체 (precursor)로 널리 사용되고 있으며, 나이오븀산염 이온에서 다양한 색상을 방출하는 활성제 이온으로 효율적인 에너지 전달이 일어남으로써 Sm3+, Dy3+, Eu3+와 같은 희토류 이온의 좋은 모체 격자로 개발할 수 있다. 본 연구에서는 마그네슘 니오베이트 MgNb2O6 모체 결정에 다양한 활성제 이온, 즉 Eu3+, Sm3+, Dy3+, Tb3+를 선택적으로 주입하여 발광 효율이 높은 천연색 형광체를 합성하고자 한다. 특히, 모체 결정에 주입되는 활성제 이온 주위의 국소적인 환경이 반전 대칭에서 변형되는 척도를 조사하여 활성제의 주 발광 파장의 세기가 최대가 되는 최적의 조건을 결정하고자 한다. Mg1-1.5xNb2O6:REx3+ 형광체 분말 시료는 초기 물질 MgO, Nb2O5와 희토류 이온을 화학 반응식에 맞게 정밀 저울로 측량하여 플라스틱 용기에 ZrO2 볼과 함께 넣고, 소정의 에탄올을 채운 뒤 밀봉하고서, 300 rpm의 속도로 20시간 볼밀 (ball-mill) 작업을 수행하였다. 그 후, 체(sieve)로 ZrO2 볼을 걸러낸 다음에 혼합된 용액을 각 비커에 담아서 $40^{\circ}C$의 건조기에서 24시간 건조하였고, 건조된 시료를 막자 사발에 넣고 잘게 갈고 80 ${\mu}m$의 체로 걸러낸 후에, 알루미나 도가니에 활성제 이온별로 각각 담아, 전기로에 장입하여 매분당 $5^{\circ}C$의 비율로 온도를 상승시켜 $350^{\circ}C$에서 5시간 동안 하소 공정을 실시한 후에, 온도를 계속 일정한 율로 증가시켜 $1,200^{\circ}C$에서 5시간 동안 소성하여 합성하였다. 합성된 형광체 분말의 결정 구조는 $Cu-K{\alpha}$ 복사선(파장: 1.5406)을 사용하여 X-선회절장치로 측정하였으며, 형광체의 표면 형상은 전계형 주사전자현미경으로 관측하였다. 흡광와 발광스펙트럼은 제논 램프를 광원으로 갖는 형광 광도계를 사용하여 측정하였다. 모체 결정에 활성제 이온 Eu3+, Sm3+, Dy3+, Tb3+가 도핑된 형광체 분말은 각각 적색, 주황색, 황색, 녹색 발광이 관측되었다. 각 발광 스펙트럼과 결정 입자의 크기와 형상 사이의 상호 관계를 조사하였다. 실험 결과로부터, 각 형광체의 발광 파장은 활성제 이온의 종류 와 서로 밀접하게 관련되어 있으며, 형광체 시료 합성시 활성제 이온의 농도를 선택적으로 조절함으로써 발광의 세기를 제어할 수 있음을 확인하였다.

  • PDF

A study on the adsorption characteristic and safety assessment of railway subsoil material (철도 노반 재료의 중금속 흡착특성과 안전성에 관한 연구)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.146-154
    • /
    • 2015
  • Domestic railway industry has grown in numbers, scale of railway ndustrial and operation because was focused on an environmentally sustainable transportation. However, it is not enough to treat and prevent heavy metals which occur as the railway operation increases. The heavy metals occurred when the operating railway and it will be flow into water system with rainfall effluent during rainfall. will flow out along with the rainfall effluent when rainfall comes. In case of a railway bridge, In particular, heavy metals were flow into the water system without any treatment from railway bridges where located nearby rivers and lakes. So, rainfall effluent from railway facilities was occurred pollution of water system. For the prevent of heavy metal runoff during rainfall, the adsorptivity of material in railway roadbed is important.In this study, adsorptivity of gravel which is main gravel and blast-furnace slag were conducted adsorption test and deducted Freundlich's and Langmuir's isothermal adsorption equations. Safety as railway subbase course material was evaluated using modeling. As a result, absorption amount of slag, Cd and Cu, was shown higher than gravel and Pb along with Zn showed higher absorption amount of gravel. However, absorption amount of slag was shown higher than gravel used as railway subbase course material as time passes by. Absorption features had more suitable determination coefficient of heavy metals in warm absorption type such as Langnmuir compared to warm absorption type like Freundlich. To add, they showed less transformation by about 10% compared to gravel in safety evaluation through modeling. This is a railway subbase course material that prevents water outflow of heavy metal thus we can know slag is needed to be used.

Analytical Study on Fatigue Behavior of Resilient Pad for Rail Fastening System (레일체결장치용 방진패드의 피로거동에 관한 해석적 연구)

  • Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.405-410
    • /
    • 2021
  • In this study, a finite element analysis was performed applying a nonlinear material model and fatigue load conditions to evaluate the service life and spring stiffness of the resilient pad for rail fastening system. As a result of the fatigue analysis, the rate of change in spring stiffness compared to the initial condition was about 16%, indicating that fatigue hardening occurred. As for the stress generated in the longitudinal direction of the resilient pad, the difference between the stress generated at the center and the edge was about 10 times or more. In addition, it was analyzed that the equivalent stress of the outer boundary was more than twice as large as that of the central part. Therefore, it was analyzed that the damage and deformation of the resilient pad are the corners of the resilient pad under actual service conditions. The fatigue life diagram of the resilient pad (S-N curve) was derived using the equivalent stress of the resilient pad according to the fatigue cycles. Using the fatigue life diagram of the resilient pad derived in this study, it is considered that it can be used to predict the fatigue life under the relevant conditions by calculating the equivalent stress of the resilient pad under various load conditions.

Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment (팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여)

  • Lee, Yeonjung;Ha, Sun-Yong;Hur, Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.192-201
    • /
    • 2019
  • While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory pool, biodegradation experiment and $KMnO_4$ oxidation experiment were conducted for 60 days using $^{13}C$ and $^{15}N$ labeled natural phytoplankton assemblage. The assemblage was collected from Lake Paldang on May 20, 2010. The photosynthetically produced total organic carbon ($TO^{13}C$), particulate organic carbon ($PO^{13}C$), and particulate nitrogen ($P^{15}N$) remained at 26%, 20%, and 17% of the initial concentrations, respectively, in the form of non-biodegradable organic matter. In addition, 12% and 38% of $PO^{13}C$ remained after $KMnO_4$ treatment on Day 0 and 60, respectively. These results indicate that photosynthetic products could be an important source of refractory organic matter after microbial degradation. Moreover, the microbially transformed algal-derived OM could contribute to the oxidation rate of the chemical oxygen demand.

Centrifugal Test on Behavior of the Dolphin Structure under Ship Collision (선박충돌 시 돌핀 구조물의 거동에 대한 원심모형실험)

  • Oh, SeungTak;Bae, WooSeok;Cho, SungMin;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.61-70
    • /
    • 2011
  • The impact protection system consists of an arrangement of circular sheet pile cofferdams-denoted dolphin structuredeeply embedded in the seabed, filled with crushed rock and closed at the top with a robust concrete cap. Centrifuge model tests were performed to investigation the behaviors of dolphins in this study. Total 7 quasi-model tests and 11 dynamic model tests were performed. The main experimental results can be summarized as follows. Firstly, The experimental force-displacement results for quasi-static tests show a limited influence on the initial stiffness of the structure from the change in fill density and the related change in the stiffness of the fill. And by comparing the dissipation at the same dolphin displacement it was found that the denser fill increase the dissipation by 16% for the 20m dolphin and by 23% for the 30m dolphin. The larger sensitivity for the large dolphin is explained by a larger contribution to the dissipation from strain in the fill. In low level impacts the dynamic force-response is up to 26~58% larger than the quasi-static and the dissipation response is showed larger in small displacement. Hence, it is concluded conservative to use the quasi-static response characteristics in the approximation of the response, and it is further concluded that the dolphin resistance to low level impacts is demonstrated to be equivalent and even superior to the high level impacts.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.