• Title/Summary/Keyword: 초기균열하중

Search Result 189, Processing Time 0.024 seconds

Permeability Evaluation in Cold Joint Concrete with Mineral Admixture under Compressive and Tensile Loading (혼화재료를 고려한 압축 및 인장상태에서 콜드조인트 콘크리트의 투수성 평가)

  • Choi, Se-Jin;Kim, Seong-Jun;Mun, Jin-Man;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.576-587
    • /
    • 2015
  • This paper presents a quantitative evaluation of water permeability in concrete with cold joint considering mineral admixture and loading conditions. Concrete samples with OPC (Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) are prepared considering 0.6 of W/C ratio and 40% of replacement. 30% and 60% loading levels for compression and 60% loading level for tension are induced to concrete samples. In compression conditions, the permeability in control case shows $2.41{\times}10^{-11}m/s$ in OPC concrete, and it changes to $2.07{\times}10^{-11}m/s$ (30% of peak) and $2.36{\times}10^{-11}m/s$ (60% of peak). The results in GGBFS concrete shows the same trend, which yields $2.17{\times}10^{-11}m/s$ (control), $1.65{\times}10^{-11}m/s$ (30% of peak), and $1.96{\times}10^{-11}m/s$ (60% of peak), respectively. In tensile conditions, the permeability increases from $2.37{\times}10^{-11}m/s$ (control) to $2.67{\times}10^{-11}m/s$ (60% of peak) while that in GGBFS concrete increases from $2.17{\times}10^{-11}m/s$ (control) to $2.24{\times}10^{-11}m/s$ (60% of peak). Permeability coefficients decreases in 30% of compressive level but increases in 60% level, while results in tensile level increases rapidly. This shows pore structure in concrete is condensed and with loading and permeability increases due to micro-cracking. Permeability evaluation considering the effects of loading conditions, cold joint, and GGBFS is verified to be important since water permeability greatly changes due to their effects.

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.

Behavior of FRP-Concrete Composite Decks with the Mechanical Connection (기계적 합성이 적용된 FRP-콘크리트 합성 바닥판의 거동 분석)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Byung-Suk;Cho, Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.609-616
    • /
    • 2010
  • FRP-concrete composite deck, an innovative system, is composed of concrete in the top and FRP panel in the bottom. Bottom FRP panel can reduce self weight and improve workability. This system requires strong connection between FRP and concrete. Therefore coarse sand coating was previously applied on FRP to improve the bonding. In this study, concrete wedge method is newly introduced to enhance both vertical bond and fatigue performance. Three FRP-concrete composite deck specimens with the concrete wedges were manufactured, and static and fatigue tests were carried out. The results showed that the new FRP-concrete composite deck satisfied deflection and crack width limits set by the design codes. And the fatigue test showed that the composite deck was capable of two million load cycles under 50% of its static strength. Based on the results, it can be concluded that that this new system has outstanding mechanical and durability performance, and therefore, satisfactorily be used in designing FRP-concrete composite deck.

Stress-Strain Responses of Concrete Confined by FRP Composites (FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • An analytical method capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (fiber reinforced polymers) composites in a rational manner is presented. Its underlying idea is that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure, and can be utilized to estimate the load-carrying capacity of concrete by considering the corresponding accumulated damage. Following from this, an elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. The proposed method enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods. Several existing analytical methods that can predict the overall response were also examined and discussed, particularly focusing on the way of considering the volumetric expansion. The results predicted by the proposed and Samaan's bilinear equation models correlated with observed results with a reasonable degree, however it can be judged that the latter is not capable of predicting the response of lateral strains correctly due to incorporating the initial Poisson's ratio and the final converged dilation rate only. Further, the proposed method seems to have greater benefits in other applications by the use of the fundamental principles of mechanics.

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Ambient Vibration Testing and System Identification for Tall Buildings (고층건물의 자연 진동실험 및 시스템판별)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.23-33
    • /
    • 2012
  • Dynamic response measurements from natural excitation were carried out for three 18-story office buildings to determine their inherent properties. The beam-column frame system was adopted as a typical structural form, but a core wall was added to resist the lateral force more effectively, resulting in a mixed configuration. To extract modal parameters such as natural frequencies, mode shapes and damping ratios from a series of vibration records at each floor, the most advanced operational system identification methods based on frequency- and time-domain like FDD, pLSCF and SSI were applied. Extracted frequencies and mode shapes from the different identification methods showed a greater consistency for three buildings, however the three lower frequencies extracted were 1.2 to 1.7 times as stiff as those obtained using the initial FE models. Comparing the extracted fundamental periods with those estimated from the code equations and FE analysis, the FE analysis results showed the most flexible behavior, and the most simple equation that considers the building height as the only parameter correlated fairly well with test results. It is recognized that such a discrepancy arises from the fact that the present tests exclude the stiffness decreasing factors like concrete cracking, while the FE models ignore the stiffness increasing factors, such as the contribution of non-structural elements and the actual material properties used.

A study on the way to improve strength of LTV's FRP structures by optimizing laminated structure (전술차량 FRP 구조물 적층 구조 최적화를 통한 강도개선 방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won;Kim, Sung-Gon;Kang, Tae-Woo;Shin, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.468-476
    • /
    • 2019
  • This paper presents the means of improving the strength of LTV's FRP structure for resolve and prevent quality problems. LTV secures enough kerb weight by applying FRP materials at hood and rear van assembly. However, because of FRP's inherent limitations, many initial quality problems such as crack at connections have occurred. Moreover, hood assy' is concerned about fall of endurance, because hood assy' have operated in abnormal condition. Therefore, this study executes lamination structure optimizations of FRP structure for improving bending strength. As a results, hood and rear van's bending strength at connections is improved 8.1 times and 1.5 times, respectively. Also hood assy's plate secures endurance life and improve 1.7 times of critical load about abnormal operating conditions through 1.4 times improvement of bending strength.