• Title/Summary/Keyword: 초기균열하중

Search Result 189, Processing Time 0.024 seconds

Acoustic Emission from Fatigue Crack Extension in Corroded Aluminum Alloys (부식된 알루미늄 합금의 피로균열진전에서 얻어진 음향방출)

  • Nam Kiwoo;Lee Jonnrark
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • The main objective of this study is to determine if the sources of AE in corroded specimens of aluminum could be identified iron the characteristics of the waveform signals recorded during fatigue loading. Coupons of notched 2024-T3 aluminum with or without corrosion (at the notch) were subjected to fatigue loading and the AE signals were recorded using non-resonant, flat, wide-band transducers. The time history and power spectrum of each individual wave signal recorded during fatigue crack growth were examined and classified according to their special characteristics. Five distinct types of signals were observed regardless of specimen condition. The waveform and power spectra were shown to be dependent on specimen condition. During the initial phase of crack growth, the signals obtained in the as-received specimens are most probably due to transgranular cleavage caused by extrusion and intrusion under fatigue loading. In the corroded specimen the signal are probably generated by intergranular cleavage due to embrittlement of grain boundary neat the pitting tip. The need for additional research to further validate these findings is indicated.

  • PDF

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Influence of eccentric load and lateral earth pressure on the tunnel behavior (편토압 및 측압이 터널거동에 미치는 영향)

  • Ahn, Hyun-Ho;Suh, Byung-Wook;Kim, Dong-Hyun;Min, Dong-Ho;Lee, Sun-Bok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • Scaled model tests were performed to explore the influence of eccentric load and lateral earth pressure on tunnel behavior and their results were verified through numerical analyses. As a method for reducing the eccentric load acting on tunnel, an eccentric supporting system (ESS) was proposed and its applicability was investigated. Experimental results showed that displacement decreased overall and the load inducing initial cracks increased as the eccentric supporting system was applied. The maximum eccentric vertical load which impacted the stability of tunnel was also increased. The test results on the influence of lateral earth pressure on tunnel behavior showed that the general aspect of displacement and crack growth changed significantly depending on the coefficient of lateral earth pressure. In addition, the weak zone In view of stability varied as well.

  • PDF

Verification of NASCOM : Nonlinear Finite Element Analysis for Structural Concrete (NASCOM에 의한 실험결과 예측)

  • 조순호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory), considering the effect of compression softening in cracked concrete, and macro-scopic and rotating crack models etc., was presented for the nonlinear behaviour of structural concrete. Considering the computational efficency and the ability of modelling the post-ultimate behaviour as major concerns, the Incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Non1inear Analysis of Structural Concrete by FEM : Monotonic Loading) developed in this way enables the predictions of strength and deformation capacities in a full range, crack patterns and their corresponding widths, and yield extents of reinforcement. As the verification purpose of NASCOM, the predictions were made for Bhide's Panel(PB21) and Leonhardt's deep beam tests. The predicted results shows somewhat stiff behaviour for the panel test, and vice versa for deep beam tests. More refining process would be necessary hereafter in terms of more accurately simulating the effects of tension-stiffening and compression softening in concrete.

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적충보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue life of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the 90-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminates. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[{90}_2/0_2]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

Behaviors of Joints with Perfobond Rib Shear Connectors in Steel-PSC Hybrid System (Perfobond Rib을 적용한 강-PSC 혼합구조 연결부의 거동 평가)

  • Kim, Sang Hyo;Lee, Chan Goo;Yoon, Ji Hyun;Won, Jeong Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.647-657
    • /
    • 2009
  • This paper studies the behavior of joints in steel-PSC (prestressed concrete) hybrid beams, which is necessary for the application of hybrid beams to spliced girder bridges, and proposes a new type of joint with improved construction convenience and structural behavior. In the proposed joint, perfobond rib shear connectors are attached to the upper and lower plates, which are expanded from the steel girders and located between the steel girder and the PSC girder. The experimental tests were performed on hybrid beams with the suggested joint. The results showed that all the beams had similar ultimate strengths and failure modes, due to the failure of their PSC parts. The composite action of the perfobond ribs was verified by examining the initial stiffness and cracks of the test beams. In addition, the test beams showed a higher degree of ultimate strength than the beams with stud shear connectors in the joints that had been previously studied. Thus, the proposed joint is effective for the steel-PSC hybrid beam.

Effects of Injection and Temperature Variations on the Breakdown Pressure of Rocks (암석의 수압파쇄특성에 미치는 주입률과 온도의 영향)

  • 이찬구;송무영;최원학;장천중;이종옥
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • To elucidate the effects of flow rate on the hydraulic fracturing property of andesite, the hydraulic fracturing tests were conducted under three flow rates. As the tests are conducted with 1ml/min, 2ml/min and 3 ml/min under the constant axial load of 40 kN, the breakdown pressures of andesite seem to be constant as 163kg/cm$^2$. The hydraulic fracturing tests were carried out under the temperatures of five stages to elucidate the effects of temperature variation on hydraulic fracturing property of granite. As the tests are carried out under the constant flow rate of 1.7ml/min, with the axial load of 40kN, the breakdown pressures of granite are 168kg/cm$^2$ at room temperature, and 124kg/cm$^2$ at 20$0^{\circ}C$. The breakdown pressure decreases about 25% than that of room temperature with increasing the temperature. Under the controlled flow rates, the initiation pressures of the microcracks of granite are well coincided with the breakdown pressures and these results are also confirmed by the levels of acoustic emission.

  • PDF

Strengthening of Reinforced Concrete Continuous Beams in Flexure by Partial External Unbonded Tendons (철근콘크리트 연속보에서 부분프리스트레스 도입에 의한 휨보강 효과)

  • Yun, Hyun-Do;Yang, Il-Seung;Lim, Jea-Hyung;Moon, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.165-172
    • /
    • 2006
  • A variety of techniques for strengthening have been developed, including pate bonding, external prestressing and overslabbing. Expecially, a strengthening technique for reinforced concrete beams using external unbonded reinforcement offers advantages in speed and simplicity of installation. The purpose of this paper is to investigate the capabilities of a new retrofitting technique, namely external prestressing(out-cable), for flexural strengthening of beams. Results of 2 physical tests (external Post-tension and out-cable system specimen) on strengthened reinforced concrete continuous beams are reported and compared. It is shown that the out-cable system can provide strength enhancement.

Seismic Velocity Change Due to Micro-crack Accumulation of Rock Samples from Seokmo Island, Korea (손상 진행에 따른 석모도 암석 시험편의 탄성파속도 변화)

  • Lee, Sang-Kyu;Choi, Ji-Hyang;Cheon, Dae-Sung;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.324-334
    • /
    • 2011
  • Seismic wave velocity change has been monitored due to the accumulation of micro-cracks by uniaxial loads on the rock samples from Seokmo Island with stepwise increase in 5 stages. After the load was applied up to 95% of UCS, P- and S-wave velocities varied in ranges of 0.9 ~ 18.3% and 2.8 ~ 14.8% of fresh rock sample velocities, respectively. Unlike seismic velocity of the dry rock samples that showed overall decreases after the loading, velocity changes of saturated rock samples were much more complicated. These seemed to be due to the mixture of two contradictory mechanisms; i.e. accumulation of micro-crack causes an increase in porosity and a decrease in wave velocity, while saturation causes an increase in wave velocity. Most of tested rocks showed a trend of velocity increase with low axial load and then velocity decrease at later stages. Starting stage of velocity decrease differs from samples to samples. After the failure of rock occurred, noticeable increases of porosity and decreases of wave velocity have been observed. It showed overall trend that the more the quartz contents and the lower the silicate, the higher the Young's modulus.

A Study on Flexural Behavior of Reinforced Concrete Beam Using Cockle Shells as Fine Aggregate (잔골재로 고막 패각을 사용한 철근콘크리트 보의 휨 거동에 관한 연구)

  • Kim, Jeong-Sup;Cho, Cheol-Hee;Kim, Kang-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2004
  • As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. The specimen which was used general aggregate showed the highest value and ductility capacity was getting decreased as the amount of cockle shell was getting increased in the ductility capacity of specimen. We might conclude that the reason of the yield strength's decline was the lack of the bond strength which was caused by the amount of cockle shell.