• Title/Summary/Keyword: 체커보드

Search Result 14, Processing Time 0.032 seconds

Finding locating checker board using corner detection and interpolation (교점의 추정 및 보간을 이용한 체커보드 검출)

  • Oh, Sang-yup;Cho, Nam-ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.165-168
    • /
    • 2016
  • 카메라 캘리브레이션은 실제 세상인 3차원의 좌표와 카메라가 만든 영상의 2차원 좌표 사이에서 수학적 관계를 알기 위해서 필요하다. 보통 체커보드의 교점을 이용하여 2차원의 좌표를 정확하게 찾는데 사용하며, 이는 카메라 캘리브레이션 계산으로 응용된다. 따라서 체커보드의 교점을 정확하게 찾아야만 카메라 캘리브레이션이 정상적인 성능을 낼 수 있다. 현존하는 체커보드 검출 방법은 입력 인수를 많이 필요로 하거나 정확도가 낮아 체커보드의 교점을 정확히 입력하지 못하면 좋지 않은 결과가 나타난다. 따라서 체커보드를 자동으로 검출하여 카메라 캘리브레이션 하는 방법은 아직 신뢰도가 낮은 편이다. 본 논문에서는 보다 안정적인 카메라 캘리브레이션을 위해서 체커 보드의 검출 성능을 높이고자 한다. 주위 픽셀들간의 미분 값을 기준삼아 검출된 교점들을 이용하여 체크 모양의 직선을 추측한다. 이 직선을 이용하면 장애물이 있거나 노이즈가 있어서 검출하기 어려운 교점들이 있는 경우에도 교점 보간 (point interpolation) 방법을 사용하여 나머지 교점들을 찾을 수 있다. 보간 과정을 통해서 검출에 방해가 되는 요소들이 있는 상황에서 체커 보드 교점 검출의 성능을 높이도록 하였다.

  • PDF

Automatic Target Recognition for Camera Calibration (카메라 캘리브레이션을 위한 자동 타겟 인식)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.525-534
    • /
    • 2018
  • Camera calibration is the process of determining the parameters such as the focal length of a camera, the position of a principal point, and lens distortions. For this purpose, images of checkerboard have been mainly used. When targets were automatically recognized in checkerboard image, the existing studies had limitations in that the user should have a good understanding of the input parameters for recognizing the target or that all checkerboard should appear in the image. In this study, a methodology for automatic target recognition was proposed. In this method, even if only a part of the checkerboard image was captured using rectangles including eight blobs, four each at the central portion and the outer portion of the checkerboard, the index of the target can be automatically assigned. In addition, there is no need for input parameters. In this study, three conditions were used to automatically extract the center point of the checkerboard target: the distortion of black and white pattern, the frequency of edge change, and the ratio of black and white pixels. Also, the direction and numbering of the checkerboard targets were made with blobs. Through experiments on two types of checkerboards, it was possible to automatically recognize checkerboard targets within a minute for 36 images.

Comparison of the Accuracy of Stereo Camera Calibration According to the Types of Checkerboards (체커보드의 유형에 따른 스테레오 카메라 캘리브레이션의 정확도 비교)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.511-519
    • /
    • 2020
  • For camera calibration, a checkerboard is generally used to determine the principal point, focal length, and lens distortions. The checkerboard has a planar and three-dimensional shape, and camera calibration parameters are affected by the size of the checkerboard, the placement of the target, and the number of target points. In this study, the accuracies of the types of checkerboards were compared using checkpoints for stereo camera calibration, and the purpose of this study was to propose the best performance checkerboard. The checkerboard with large flat shape showed comparatively high accuracy through comparison with the check points. However, due to the size of the checkerboard, it was inconvenient to move and rotate, and there was a disadvantage in that it was difficult to shoot so that the target points could all appear in the stereo camera. The checkerboard, which was manufactured in a small size in a flat shape, was easy to move and rotate but had the lowest three-dimensional accuracy. The checkerboard with targets with height values had the hassle of having to determine the three-dimensional coordinates of the target points by using observation equipment for camera calibration, but it was small in size, convenient to move and rotate, and showed the highest three-dimensional accuracy.

Evaluating the Accuracy of an OpenCV-Based Length Measurement Algorithm: The Impact of Checkerboard Type and Capturing Conditions (체커보드 종류 및 촬영조건에 따른 OpenCV 기반 길이측정 알고리즘 정확도 분석)

  • Kim, Hyeonmin;Kwon, Woobin;Kim, Harim;Kim, Hyungjun;Song, Seung Ho;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.133-144
    • /
    • 2024
  • The OpenCV-based length measurement algorithm is anticipated to be effective for length measurement inspection tasks, providing objective inspection outcomes. Nonetheless, there is a notable gap in research regarding the influence of various checkerboard types and capturing conditions on the algorithm's accuracy in real-world construction settings. Consequently, this study proposes a methodology employing an OpenCV-based length measurement algorithm and checkerboard for digital construction inspection tasks. The findings suggest that using a checkerboard with square sizes of A4 or larger, and 50mm or larger, is optimal for capturing distances and angles within 4m and 90°, respectively, when deploying the algorithm. These insights are anticipated to provide practical guidelines for professionals conducting digital-based length measurement inspections.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

Connectivity and Conductivity of a Three-Dimensional Checkerboard-Shaped Composite Material (체커보드 형상을 가진 3차원 복합소재의 연결도와 전도율)

  • KIm, In-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.189-198
    • /
    • 2004
  • We consider the problem of whether the three-dimensional checkerboard has the connectivity. For this purpose, we first consider the problem of determining the effective conductivity of a checkerboard-shaped composite material by the Brownian motion simulation method. Specifically, we use the efficient first-passage-time technique. Simulation results show that the effective conductivity of the three-dimensional checkerboard increases faster than the two-dimensional counterpart as the contrast between the phase conductivities increases. This implies that the three-dimensional checkerboard's connectivity is stronger than the two-dimensional checkerboard's and thus each phase material of the three-dimensional checkerboard is more likely to be connected than not to be connected.

Topology Optimization of a Vehicle's Hood Considering Static Stiffness (자동차 후드의 정강성을 고려한 위상 최적화)

  • Han, Seog-Young;Choi, Sang-Hyuk;Park, Jae-Yong;Hwang, Joon-Seong;Kim, Min-Sue
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.69-74
    • /
    • 2007
  • Topology optimization of the inner reinforcement for a vehicle's hood has been performed by evolutionary structural optimization(ESO) using a smoothing scheme. The purpose of this study is to obtain optimal topology of the inner reinforcement for a vehicle's hood considering the static stiffness of bending and torsion simultaneously. To do this, the multiobjective optimization technique was implemented. Optimal topologies were obtained by the ESO method. From several combinations of weighting factors, a Pareto-optimal solution was obtained. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization of the inner reinforcement of a vehicle's hood considering the static stiffness of bending and torsion.

Formal Verification of I-Link Bus for CCA Board (CCA 보드를 위한 I-Link 버스의 정형 검증)

  • 남원홍;성창훈;최진영;기안도;한우종
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.45-47
    • /
    • 2000
  • 본 연구는 심볼릭 모델 체커 중의 하나인 SMV(Symbolic Model Verifier)를 이용하여 한국전자통신연구원(ETRI)에서 개발한 CCA(Cache Coherent Agent) 보드를 위한 I-Link Bus(Inside Bus)의 몇 가지 특성(property)들을 검증하여 I-Link Bus의 요구사항(requirement)이 만족됨을 보인다. 이 검증에서는 I-Link Bus의 모델을 SMV 입력 언어로 명세하며, 검증할 특성들을 시제 논리(temporal logic)를 이용하여 나타낸다. 검증을 통해서 I-Link Bus와 PIF(Processor Interface), DC(Directory Controller), RC(Remote access cache Controller)모듈들이 중재기 우선 순위, send 우선 순위, 중재 요청 신호의 관리, liveness등의 특성들을 만족한다라는 것을 검증하였다.

  • PDF

Precise Detection of Coplanar Checkerboard Corner Points for Stereo Camera Calibration Using a Single Frame (스테레오 카메라 캘리브레이션을 위한 동일평면 체커보드 코너점 정밀검출)

  • Park, Jeong-Min;Lee, Jong-In;Cho, Joon-Bum;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.602-608
    • /
    • 2015
  • This paper proposes an algorithm for precise detection of corner points on a coplanar checkerboard in order to perform stereo camera calibration using a single frame. Considering the conditions of automobile production lines where a stereo camera is attached to the windshield of a vehicle, this research focuses on a coplanar calibration methodology. To obtain the accurate values of the stereo camera parameters using the calibration methodology, precise localization of a large number of feature points on a calibration target image should be ensured. To realize this demand, the idea with respect to a checkerboard pattern design and the use of a Homography matrix are provided. The calibration result obtained by the proposed method is also verified by comparing the depth information from stereo matching and a laser scanner.

Experimental Validation of Topology Design Optimization (밀도법 기반 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • From the numerical results of density-based topology design optimization, a CAD geometric model is constructed and fabricated using 3D printer to experimentally validate the optimal design. In the process of topology design optimization, we often experience checkerboard phenomenon and complicated branches, which could result in the manufacturing difficulty of the obtained optimal design. Sensitivity filtering and morphology methods are used to resolve the aforementioned issues. Identical volume fraction is used in both numerical and experimental models for precise validation. Through the experimental comparison of stiffness in various designs including the optimal design, it turns out that the optimal design has the highest stiffness and the experimental result of compliance matches very well with the numerical one.