• Title/Summary/Keyword: 체적 탄성 계수

Search Result 101, Processing Time 0.024 seconds

A Numerical Analysis on a Dependence of Hydrogen Diaphragm Compressor Performance on Hydraulic Oil Conditions (오일부 운전조건 변화에 따른 수소용 다이어프램 압축기의 성능예측에 대한 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.471-478
    • /
    • 2009
  • The specific some types of compressors are appropriate for a use in hydrogen gas station. Metal diaphragm type of hydrogen compressor is one of them, which can satisfy the critical requirements of maintaining gas purity and producing high pressure over 850 bar. The objective of this study is to investigate an characteristics of compression through two-way Fluid-Structure-Interaction (FSI) analysis as bulk modulus and initial volume of oil independently varies. Deflection of diaphragm, oil density, gas and oil pressure were analyzed during a certain period of compression process. According to the analysis results, bulk modulus and initial volume remarkably affected deflection of diaphragm, oil density, gas and oil pressure. The highest gas pressure were attained with the highest bulk modulus of $7e^9\;N/m^2$ and the lowest initial oil volume of 80 cc.

A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain (스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘)

  • Kim, Young;Vanderby, Ray
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.373-384
    • /
    • 2000
  • The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

  • PDF

Development of Finite Element Analysis Program for the Concrete Pavement (유한 요소법에 의한 콘크리트 포장도로의 구조해석 프로그램개발)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 1990
  • As modern industry go further, a rigid concrete pavement has been widely constructed. The load carrying capacity of the flexible asphalt pavements is brought about by a layered system, distributing the load over the subgrade, rather than by the bending action of the slab. On the other hand, the rigid pavement, because of its rigidity and high modulus of elasticity, tends to distribute the traffic load over wide subbases, and its capacity of the strength is supplied by the slab itself. Thus, it is necessary to study the structural behavior of concrete slab under the variations of temperature changes and applied traffic loads. It reguires the development of finite element analysis program for the concrete highway pavement, which provides better understanding of concrete pavement behavior and effective design data to highway engineers.

  • PDF

Study on the Static and Dynamic Structural Analysis Procedure of Excavators (굴삭기의 정적/동적 강도 해석법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect (자체 맥동 감쇠 효과를 갖는 연료레일의 오일 해머 및 분사 특성에 따른 압력맥동 시뮬레이션)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Heon-Kyun;Lee, Gee-Soo;Hwang, Jae-Soon;Lee, Dong-Eun;Kim, Hyung-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.332-336
    • /
    • 2008
  • A pulsation damper is usually mounted on the fuel rail to diminish undesirable noise in the vehicle cabin room. However, pulsation dampers are quite expensive. Therefore, several studies have focused on reducing fuel pressure pulsations by increasing the self-damping characteristics of the fuel rail. This paper is a basic study in the development of a fuel rail that can reduce pulsations via a self-damping effect. In this study, the pressure pulsation characteristics were of investigated with respect to the aspect ratio of the cross section, wall thickness, and fuel rail material through oil hammer simulations. An oil hammer simulation was performed in advance to simulate the pressure pulsations at the resonant speed, which is a time-saving way. The pressure pulsation peak of fuel rail was observed to rise as the injection period increases. Increase of the aspect ratio and decrease of the wall thickness can reduce the pressure pulsation efficiently.

  • PDF

Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique (PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어)

  • Yu, Sam-Hyeon;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.

Evaluation of Concrete Structures Considering Reinforcing Bars in Columns (기둥의 보강철근을 고려한 콘크리트 구조물의 거동 평가)

  • Song, Hyung-Soo;Gwon, Ji-Youn;Cha, Hee-Youn;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.289-292
    • /
    • 2008
  • In this study, we interpreted 20 story building by applying the modified modulus of elasticity considering the reinforcing steel proposed in previous literature, and analyzed the movement of the structure according to axial reinforcing steel ratio and lateral reinforcing steel volume ratio. Additionally, we tried to get the result similar to the actual movement considering the order of the construction by performing the analysis by construction stage. Finally, we tried to reduce the section of the column through the analysis considering the reinforcing steel of the column. When interpreting the 20 story building considering the reinforcing steel in the columns, we can reduce the column members up to 4.94% comparing to the general analysis. If we do the same for each construction stage, it is analyzed that we can reduce up to 19%.

  • PDF

Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect (자체 맥동 감쇠 효과를 갖는 연료레일의 설계 변수별 압력맥동 특성에 관한 수치적 연구)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Song, Kyung-Suk;Kim, Bo-Kyoum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.186-192
    • /
    • 2007
  • In general, pulsation damper is installed in fuel rail for conventional MPI engine to decrease undesirable noise in vehicle cabin room. However, pulsation damper is so expensive that there are prevailing studies to reduce fuel pressure pulsations with integrated damping effect. This paper is one of basic studies for development of fuel rail to abate pulsations with self-damping effect. Primarily, the pressure pulsation characteristics was investigated with aspect ratio of cross section, wall thickness, and materials of fuel rail. A high aspect ratio or thin wall was found to absorb the pressure pulsations effectively. But volume effects on the fuel pressure pulsation reductions were not especially significant than cross section effects because volume increment rate is larger than pressure pulsation reduction rate. The fuel rail made of aluminum is effective for reduction of pressure pulsation than that of low-carbon steel. Pressure change period increases on the basis of same lengths of supply line and fuel rail as the volume is enlarged and/or the thickness of wall is thinned.

A Experimental Study on the Material Charateristics of Crushed Aggregate Produced in Quarry (석산에서 생산되는 부순골재의 재료 특성에 관한 연구)

  • Baek Dong-Il;Youm Chi-Sun;Kim Myung-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.569-579
    • /
    • 2005
  • An investigation for long-term strength characteristics of crushed sand concrete using crushed sands produced in Yang-san, Kim-hae and Jin-hae that can be assumed to respectively represent eastern, middle and western suburbs of Busan has been carried out. Concrete is composed of 70~80% of aggregates in whole volume so the effect of aggregates quality to the characteristics of concrete is very important. Since 1980s, aggregates used in concrete have already been substituted crushed stone because of the exhaustion of natural gravel and sand. Crushed sand tends to increase in using quantity because of the prohibition of sea sand picking and deterioration of river sand. Crushed sand is blended with river sand in order to investigate the quality changes and characteristics of concrete as variation of blend ratio of crushed sand (n, 50, 70, 80, 90, 100%). Slump and air content were measured to investigate the properties of fresh concrete. Unit weight, compressive strength and modulus of elasticity in age of 7, 28, 60, n, 180 days were measured to investigate properties of hardened concrete. Compressive strength, unit weight and modulus of elasticity were increased with a passage of time and they are expected to keep on increasing in long-term age as well. The experimental results of the qualifies of crushed aggregates in each producing area, were all satisfied with Korea Standard. The results of the measurement of slump exposed that slump preferably decreased as mixing rate increased till 70~80% but it increased to mixing rate 70~80%. The air content was exposed that it decreased by micro filler phenomenon according to that crushed sand b)ended ratio increased. According to the result of measuring unit weight in age of 7, 28, 60, 90, 180days, it increased in accordance with that blended ratio of crushed aggregates increases. As a result of measuring compressive strength and modulus of elasticity in age of 7, 28, 50, 90, 180days, compressive strength was highest when it is 70% of blended ratio.

Comparison of Short-term Mechanical Characteristics of Fine-grained Soils Treated with Lime Kiln Dust and Lime (석회노분과 석회로 처리된 세립토의 단기적 역학특성 비교)

  • 김대현;사공명;이용희
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.75-83
    • /
    • 2004
  • The Indiana Department of Transportation (INDOT) has permitted the use of Lime Kiln Dust (LKD) as a low-cost construction material in creating a workable platform for soil modification (not for soil stabilization) since the early 1990s on selected projects. However, the enhanced strength of soils with LKD has not been accounted for in the subgrade stability calculations in the design process. This study was initiated to evaluate how the lime kiln dust is a comparable material to hydrated lime. A series of laboratory tests were performed to assess the mechanical benefits of lime kiln dust in combination with various predominant fine grained soils encountered in the State of Indiana, such as A-4, A-6 and A-7-6. In the course of this study, several tests such as the Atterberg limits, standard Proctor, unconfined compression, CBR, volume stability, and resilient modulus were performed. As a result, mixtures of fine grained soils with 5% lime or 5% LKD substantially improve unconfined compressive strength up to 60% - 400%. CBR values for treated soils are in the range of 25 to 70 while those for untreated soils range from 3 to 18. In general, significant increase in resilient moduli of the soils treated with lime and LKD was observed. This indicates that lime kiln dust may be a viable, cost effective alternative to hydrated lime in enhancing the strength of fine grained soils.