• Title/Summary/Keyword: 체적 곡선

Search Result 167, Processing Time 0.021 seconds

Measurements of Permeability Characteristics for Unsaturated Weathered Soils (불포화 풍화토의 투수특성 측정)

  • Ryu, Ji-Hyeop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2000
  • Series of tests were carried out to study permeability characteristics of unsaturated soils. The weathered soils taken from Inju, Sungwhan, and Kuri, were selected to have different amount of fine grained soils in order to find a possible correlation between the unsaturated permeability behavior and fine grained soils contents. Measurements of permeability for unsaturated soils were performed with a newly developed apparatus, which modeled after Klute's apparatus(1965a). The apparatus was designed to measure volumetric water content and permeability by applying incremental suction pressure. Permeability and volumetric water content of unsaturated soils generally decreased as density of the soil increased. The relationship between volumetric water content and permeability was not related to the fine grained soils contents because the plots scattered widely. By comparing volumetric water content with permeability, empirical parameters A and B could be determined, which made to be possible to predict unsaturated permeability from soil-moisture characteristics.

  • PDF

A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate (밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구)

  • Yun, Hong-Seok;Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.19-27
    • /
    • 2017
  • The effects of changes in area and location of fire source, fire growth rate, and volume of compartment on the major fire characteristics, including heat release rate, in closed compartment fires were examined. To this end, a fire simulation using Fire Dynamics Simulator (FDS) was performed for ISO 9705 room with a closed opening. As main result, it was found that the changes in the area and location of fire source did not significantly affect the thermal and chemical characteristics inside the compartment, such as maximum heat release rate, total heat release, maximum temperature at upper layeras well as species concentrations. However, increasinthe fire growth rate and volume of compartment resulted in increase of the maximum heat release rate and total heat release, decrease in the limiting oxygen concentration and increase in the maximum CO concentration. Finally, a methodology for the application of fire growth curves to closed compartment fires was proposed by deriving the correlation of the maximum heat release rate expressed as a function of the fire growth rate and the volume ratio of compartment based on the ISO 9705 room.

Numerical Verification of HWAW Method in the Near Field (근거리장에서 HWAW 기법의 수치해석적 검증)

  • Bang, Eun-Seok;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.5-17
    • /
    • 2007
  • Various field setup and filtering criteria have been suggested to avoid the near field effects in surface wave methods. Unlike other surface wave methods HWAW method uses the near field component positively. It is possible by using maximum energy point based on time-frequency map and inversion method to consider receiver locations from the source point and body wave component. To verify the HWAW method in the near field numerical study was performed and the wave propagation in the stratified soil media was simulated due to a surface point load. All of five representative soil models were used. The experimental dispersion curves, determined by HWAW method at the various receiver distances in the region of near field, all coincided well with the theoretical dispersion curves determined by 3D forward modeling (Kausel's method). Consequently, it was considered that the HWAW method can provide reliable $V_s$ profiles effectively in the near field.

Analysis of Intensity-Duration-Quantity (IDQ) Curve for Designing Flood Retention Basin (홍수저류지 설계를 위한 강우강도-지속시간-홍수량(IDQ) 곡선 해석)

  • Kim, Jin Gyeom;Kang, Boosik;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.83-93
    • /
    • 2014
  • This research was carried out for suggesting design criteria and procedure for maximizing flood control capacity by building flood control facilities like flood retention basin built in connection with existing facilities in order to cope with increased uncertainty due to factors such as urbanization and climate change. We suggested the procedure for the analysis under the various scenarios applicable for the cases of determining retention basin capacity as provision for the flood water level increase in main river channel or estimating flood water level reduction effect when retention basin capacity is given. Procedure for estimating design flood hydrograph at any duration using Intensity-Duration-Quantity (IDQ) originated from the existing IDF, and its application example were provided. Based on rainfall estimated by the IDQ analysis, it is possible to calculate an equivalent peak hydrographs under various scenarios, e.g. lower frequency hydrograph under same rainfall duration with water level higher than existing hydrograph, hydrograph with same peak and higher volume due to increased rainfall duration, hydrograph with higher peak and volume than existing hydrograph, etc.

Ideal Freezing Curve Can Avoid the Damage by Latent Heat of Fusion During Freezing (냉동 시 잠재용융열에 의한 피해를 최소화할 수 있는 이상냉동 곡선)

  • 박한기;박영환;윤웅섭;김택수;윤치순;김시호;임상현;김종훈;곽영태
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.219-228
    • /
    • 2003
  • Background:Liquid nitrogen freezing techniques have already met with widespread success in biology and medicine as a means of long-term storage for cells and tissues. The use of cryoprotectants such as glycerol and dimethylsulphoxide to prevent ice crystal formation, with carefully controlled rates of freezing and thawing, allows both structure and viability to be retained almost indefinitely. Cryopreservation of various tissues has various con-trolled rates of freezing. Material and Method: To find the optimal freezing curve and the chamber temperature, we approached the thermodynamic calculation of tissues in two ways. One is the direct calculation method. We should know the thermophysical characteristics of all components, latent heat of fusion, area, density and volume, etc. This kind of calculation is so sophisticated and some variables may not be determined. The other is the indirect calculation method. We performed the tissue freezing with already used freezing curve and we observed the actual freezing curve of that tissue. And we modified the freezing curve with several steps of calculation, polynomial regression analysis, time constant calculation, thermal response calculation and inverse calculation of chamber temperature. Result: We applied that freezing program on mesenchymal stem cell, chondrocyte, and osteoblast. The tissue temperature decreased according to the ideal freezing curve without temperature rising. We did not find any differences in survival. The reason is postulated to be that freezing material is too small and contains cellular components. We expect the significant difference in cellular viability if the freezing curve is applied on a large scale of tissues. Conclusion: This program would be helpful in finding the chamber temperature for the ideal freezing curie easily.

The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine (디젤기관의 흡기 맥동류가 체적효율에 미치는 영향)

  • Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

2-Dimensional Numerical Model for Sediment Transport considering the Impact of Helical Flow (Helical Flow의 영향을 고려한 2차원 하상변동모의)

  • Kim, Mujong;Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.64-64
    • /
    • 2016
  • 하천은 인간에게 용수의 이용 및 하천호안의 휴식처로써의 이용을 통해 직접적인 영향을 주고, 하천구조물의 심미적 영향, 랜드마크로써의 역할을 통해 간접적인 영향을 준다. 또한, 하천은 하천생태계에 서식하는 동 식물에게 영향을 준다. 그러나 하천유사로 인해 통수능이 감소하고, 하천구조물 주변에 침식을 야기할 뿐만 아니라, 댐과 저수지에 유사의 퇴적으로 저수용량의 감소시킨다. 그러므로 이를 예측하는 것은 경제적, 환경적으로 중요하다. 하상변동의 모의를 위해 기존의 2차원 모형은 만곡흐름에서 유동의 helical flow를 고려하지 않아 예측이 부정확하였다. 본 연구에서는 천수방정식을 이용한 하상변동 수치모의에 helical flow의 영향을 고려하였다. 하천과 같은 천수영역에서의 흐름 및 하상변동을 해석하기 위하여 수심평균 된 Navier-Stokes equations인 천수방정식을 이용하였다. 지배방정식은 곡선 좌표계에서 유한체적법으로 차분하였고, 비엇갈림격자를 사용하였다. 지배방정식의 닫힘 문제를 해결하기위해 0-방정식 난류모형을 사용하였고, "time marching" 기법의 적용을 위해 계산단계분할 방법을 이용하였다. 비엇갈림격자의 사용으로 인해 검사체적의 면에서의 유속이 필요하여 pressure-velocity coupling을 사용하여 유속의 진동을 줄였다. 또한, 만곡부의 helical flow를 모의하기위해 helical flow intensity model을 도입하였다. 앞에서 계산한 흐름을 바탕으로 유사량 산정공식과 Exner 방정식을 이용하여 하상변동을 모의하였다. 흐름의 검증, helical flow의 영향에 대한 확인, 하상변동의 적용을 위해 선행연구의 실험이 사용되었다.

  • PDF

Comparative Study on Unsaturated Characteristic Curves of Boeun Granite Weathered Soil during Drying and Wetting Paths (건조 및 습윤과정에서 보은 화강암 풍화토의 불포화특성곡선 비교)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.15-24
    • /
    • 2016
  • To investigate the unsaturated characteristics of the Boeun granite weathered soil, matric suction and volumetric water content were measured in both drying and wetting paths using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured results, Soil-Water Characteristics Curve was estimated by van Genuchten (1980) model. The relationship between effective degree of saturation and matric suction showed the non-linear curve with S-shape and the hysteresis phenomenon occurred during drying and wetting paths. Suction Stress Characteristics Curve was estimated by the Lu and Likos (2006) model. The suction stress in drying path was constantly maintained and that in wetting path tended to increase when the effective degree of saturation was low. But the suction stress in drying path was larger than that in wetting path at the same degree of saturation when the effective degree of saturation became larger. Meanwhile, Hydraulic Conductivity Function was evaluated by the van Genuchten (1980) model which is one of the parameter estimation methods. The unsaturated hydraulic conductivity decreased with increasing the matric suction, and the decreasing velocity regarding to the matric suction in drying path was larger than that in wetting path.

Gradation Curve of Aggregate using Digital Image Process (디지털 이미지 처리 기법을 이용한 골재의 입도분포곡선)

  • Hwang, Tak-Jin;Cho, Jae-Yoon;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.31-37
    • /
    • 2010
  • Shape conversion coefficient and equivalent diameter for changing 2D image to 3D image by the Digital Image Process(DIP) have been suggested and modified particle size distribution curve has been showed. Couple of aggregates, like two different marine aggregates and two different crushed stones, have been employed. The measured flatness ratios of each aggregate were 0.30, 0.36, 0.47 and 0.83, respectively. Also, the conversion shape coefficients of each aggregate were determinded as 0.77, 0.78, 0.84 and 0.92. The size of aggregate has been modified by multiplying the shape conversion coefficient and the aggregate size from DIP. The modified gradation curve with modified volume and weight of aggregate has been suggested. Within the limited test results, DIP is one of useful to get the particle shape of aggregate with limitation of measuring errors and to apply the particle distribution curve.

Modeling Study on Nuclide Transport in Ocean - an Ocean Compartment Model (해양에서의 핵종이동 모델링 - 해양구획 모델)

  • Lee, Youn-Myoung;Suh, Kyung-Suk;Han, Kyong-Won
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.387-400
    • /
    • 1991
  • An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and intertaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean model. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves.

  • PDF