• Title/Summary/Keyword: 체적함유율

Search Result 34, Processing Time 0.023 seconds

Temperature Effect on Impact Fracture Behavior of GF/PP Composites (GF/PP 복합재료의 충격파괴거동에 대한 온도효과)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

A Study about Mechanical Properties of GFRP Laminates depending on Fiber Volume Fraction (섬유체적함유율의 영향에 따른 GFRP적층판의 기계적 특성에 관한 연구)

  • 국중석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.225-230
    • /
    • 2003
  • Domestic small and medium ship companies have lack of leisure boat technologies and especially they have a problem about its low performance because of the overweight of boat hull. So it is necessary to have alternative manufacturing process to improve the mechanical properties of composite material. In this study, a vacuum curing system was developed as an alternative manufacturing process and then changed the fiber volume fractions of GFRP laminates. The properties of GFRP laminates such as void contents, Young's modulus and fracture toughness were determined for various fiber volume fractions.

  • PDF

Estimation of Mechanical Properties of Tungsten-Fiber-Reinforced Ti-MMCs by Hot Isostatic Pressing (HIP 처리 티타늄기 MMC 의 기계적 특성평가)

  • Son, Sun-Young;Nishida, Shin-Ichi;Lee, Jong-Hyung;Kim, Young-Tae;Lee, Do-Kyung;Son, Yong-Jea;Jang, Hyun-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • The objective of this study is the estimation of the mechanical properties of HIP-treated MMCs by an optimized manufacturing process. The Ti-MMCs were fabricated by HIP and rotary swaging (RS) for secondary processing. The Ti-MMCs with different tungsten fiber contents of 0, 6, 9, and 12 vol% were subjected to tensile tests, fatigue tests, and hardness tests. The results show that the hardness values of Ti-MMCs increased with the increasing volume percent of tungsten fibers, the tensile strength increased by approximately 50% (specific strength: 38%) at the 9 vol%. The value of tungsten-fiber orientation F affects the tensile strength. The fatigue strengths of the Ti-MMCs did not improve. HIP is a useful manufacturing method for Ti-MMCs and RS is an important process for improving fiber orientation during secondary processing.

Study on technique development for the solidified body of rock waste and evaluation of fracture toughness (암석폐재의 고화체 합성기술의 개발과 파괴인성평가에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyosun;Kim, Jin-Yong;Lee, Jeong-Gee;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1452-1461
    • /
    • 1997
  • The hot press apparatus to obtain the solidified rocks with 60mm of diameter against rock waste was developed, and the optimum conditions for solidification were founded out, of which were 300.deg. C of temperature and 1hr of holding time. The solidified rocks reinforced with the fibers (carbon, steel) were made by means of a hydrothermal hot press method. Fracture toughness of those was obtained using the round compact tension(RCT) specimens. Load and displacement behaviours of the solidified rocks reinforced with the fibers were dependent upon the fiber volume fraction and kind of the fibers. Strength and fracture energy of the solidified rocks with steel were much larger than those of the solidified ones with carbon because of the Bridge's effect, multiple cracking and crack branching phenomena.

ELECTRICAL PROPERTIES OF ELECTRIC DOUBLE LAYER CAPACITOR USING ORGANIC SOLUTION CONTANING TETRAETHYLAMMONIUM TETRAFLUOROBORATE AS ELECTROLYTE (Tetraethylammonium tetrafluoroborate를 함유한 유기 전해액을 사용한 전기 이중층 콘덴서의 전기적 특성)

  • Park, H.W.;Kwon, S.S.;Jeong, S.H.;Lee, U.Y.;Lim, K.J.;Park, S.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1520-1522
    • /
    • 1996
  • 전기 이중층 콘덴서는 일반적인 콘덴서와 백업용 이차 전지의 중간적 성격을 갖는 디바이스로서 직류 전압 인가시 전하는 진해액과 활성탄의 계면에 전기이중층을 이루며 축적된다. 본 논문에서는 탄화 및 활성화 조건을 달리하여 활성탄 전극을 제조하고 세공 면적, 비표면적, 겉보기 밀도차 기공율을 측정,검토하였으며 여러가지 유기 용매에 tetraethylammonium tetrafluoroborate를 각각 첨가하여 제조한 전해액의 전기전도도를 정하고 이들 전해액과 활성탄 전극을 이용하여 전기 이중층 콘텐서를 제작한 후 정전용량, 활성탄 전극의 안정 전위, 체적용량 밀도, 중량용량 밀도 등을 검토하였다.

  • PDF

The Material Properties of Coniferous Barks (침엽수재(針葉樹材) 수피(樹皮)의 물성(物性))

  • Cheong, Tae Seong;Min, Du Sik;Kim, Byoung Ro
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.59-65
    • /
    • 1985
  • In this study, the vegetation of Pinus densiflora S. et Z., Pinus regida Miller, Pinus koraiensis S. et Z., and Larix kaempferi Satgent (major conifers) stands planted in the Chungcheong-province was investigated to obtain the fundamental informations for the improvement of coniferous barks utilization. The results may be summarized as follows; 1) Barks are much richer in quantity of extractives and lignin than the corresponding wood. Alcohol-benzene extractives of Pinus koraiensis barks are the highest among others. Pentosan contents are lower in the bark than in the wood, but pentosan contents of the Larix kaempferi bark is the highest among others. 2) Barks are acid in nature, and PH values of barks varying from 3.5 to 4.1 are lower than that of wood. The ash contents of barks are greater than the corresponding wood. 3) A bark comprises from 13.9 to 19.8 percents of a typical log by volume. The calorific values are higher in the barks than in the wood, and calorific values of Pinus koraiensis barks are the highest among others.

  • PDF

Effects of Wave Attenuation on the Acoustic Emission Amplitude Distribution of Injection-Molded Fiber/Plastic Composites (섬유/플라스틱 사출성형 복합재료의 음향방출 진폭분포에 대한 감쇠효과)

  • Choi, N.S.;Takahashi, Kiyoshi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • The attenuation of acoustic emission (AE) waves was evaluated for injection-molded short-fiber-reinforced thermoplastic composites employing simulated AE waves. Values of attenuation coefficient (${\alpha}$) decreased more with increasing fiber volume fraction ($V_f$) than that expected from a simple linear relation between ${\alpha}$ and $V_f$. The effect of wave attenuation was taken into account in a quantitative analysis of the AE peak amplitude distribution which was obtained from each zone partitioned in a specimen gage portion. The amplitude distribution compensated for the measured attenuation loss was exhibited almost similar in every zone of the specimen. Consequently, it was, shown that the AE amplitudes obtained from fiber/plastic composites were considerably affected by the attenuation.

  • PDF

High-Purity Purification of Indole Contained in Coal Tar Fraction - Separation of Close Boiling Mixtures of Indole by Solute Crystallization - (콜타르 유분 중에 함유된 인돌의 고순도 정제 - 용액 결정화에 의한 인돌 유사 비점 혼합물의 분리 -)

  • Kim, Su Jin;Kang, Ho-Cheol;Jeong, Hwa Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.238-241
    • /
    • 2010
  • The purification of indole from 54.3wt% indole fraction (temperature range of distillate: $250{\sim}255^{\circ}C$) recovered by extraction-distillation combination of coal tar fraction (temperature range of distillate: $240{\sim}265^{\circ}C$) was examined by solute crystallization. The feed consists of eight components such as quinoline, iso-quinoline, indole, quinaldine, 1-methylnaphthalene, 2-methylnaphthalene, biphenyl and phenyl ether. Hexane and an aqueous solution of methanol (50 : 50 vol%) were used as the crystallization solvent and the coolant, respectively. A batch stirred tank of glass material was used as a crystallization apparatus. By increasing the operation temperature and the volume ratio of solvent to feed at initial, the purity of indole increas ed, but yields of indole showed a decreasing tendency. Solute crystallization method using hexane as a solvent was excellent because the purity of 99.3 wt% indole was recovered at the yield of 50% without washing operation.

Evaluation of Structural Performance for Filament Wound Composite Ablative Tubes (필라멘트와인딩된 복합재 내열튜브의 구조 성능 평가)

  • 윤성호;황태경;윤남균;문순일
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2002
  • Composite ablative tubes required capabilities of ablative and structural characteristics were fabricated through filament winding technique and several experiments were conducted to evaluate the structural performance of composite ablative tubes. For this purpose, manufacturing procedures were briefly described and then resin digestion method was applied to measure the fiber volume fraction and the void content of composite ablative tubes. The configuration of tensile specimen fur composite ablative tubes with not losing the continuity of reinforced fibers was suggested by evaluating mechanical properties of several types of the specimen with different widths. Also, suitable processing variables for composite ablative tubes were determined by evaluating mechanical properties of several types of the specimen with different processing variables. In addition, acoustic emission signals were obtained during the proof test and could be applicable to study the crack initiation and the damage mode of composite ablative tubes. Finally, the structural reliability of composite ablative tubes could be verified to satisfy design requirements through the proof and burst tests.

A Study on the Preocessing of high Runctional Composites and the Evaluation of Its Characteristics (고기능성 복합재료의 제조와 그 특성평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • Filament winding method is widely used for composite fabrications using low viscosity liquid for-mation and processing asymmetrical structures of pressure vessel pipe rocket motor case etc. The filament winding method is affected by several parameters such as pot life of process time viscosi-ty of resin filament winding temperature and schedules curing condition and post curing condi-tion of resin. To develope high functional composite materials the rotation(5, 15, 20, 30rpm) of the winding machine was controlled by D.C motor. And the wiper to give proper tension was equipped between strand and resin bath. The resin is hooked by the design wiper. The adequate cure schedule was found by DSC. NOL ring test is carried out to investigate the basic physical properties such as design technology. The void contents in filament winding is generally higher than that of the prepreg laminated plate. These high contents of void can make a crack in resin in spite of low deformation. These problem was solved by giving tension in processing. To improve the characteristics of fiber volume fraction void contents resin/fiber bonding the winding speedc is changed under constant tension. It was found that resin impregnation was not different from in fiber contents void contents at the range of 0.5~1kg tension but it was found that resin was not impregnated at the above of 1.5kg tension. In burst test a pure PE liner was failed at a nozzle part under the $14kg/\textrm{cm}^2$ pressure but a pressure vessel of CNG was failed at a cylinder part under the $200kg/\textrm{cm}^2$ pressure.

  • PDF