• Title/Summary/Keyword: 체적함유율

Search Result 34, Processing Time 0.151 seconds

토양오염도 측정을 위한 Frequency Domain Reflectometry with Vector Network Analyzer(FDR-V) system 적용성 평가

  • Kim Man-Il;Kim Hyeong-Su;Jeong Gyo-Cheol
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.36-41
    • /
    • 2005
  • 복소유전율상수인 실수부(Real part)와 허수부(Imaginary part)를 측정하기 위하여 Frequency Domain Reflectometry with Vector Network Analyzer(FDR-V) 측정 장비로 $1{\sim}18GHz$ 범위 내에서 매질의 기본 구성단위인 공기, 물, 흙입자에 대한 기본적인 유전율 특성을 파악하고, 이들로부터 다공질 매질내 유류 오염물질의 함유 특성을 측정할 수 있다. 또한 제작된 시료에 대한 포화도와 1GHz 범위에 분포하는 실수부 유전율상수와의 관계로부터 매질의 공극내 함유된 물질의 유전율상수 특성에 매우 민감한 반응을 보이므로, 이들로부터 매질의 공극률 내지 유효공극률의 측정이 가능할 것으로 사료된다.

  • PDF

Characteristics of Shear Behavior of Remolded Nak-dong River Sandy Silt (재성형된 낙동강 모래질 실트의 전단거동 특성)

  • Kim Young-Su;Tint Khin Swe;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 2007
  • The results from normally consolidated isotropic drained and undrained triaxial compression tests (NCIU and NCID) on sand with high silt content were presented in this paper. The experiments were performed on specimens of Nak-dong River sand with 63% silt content under effective confined pressures, 100 kPa to 400 kPa. From test results, Sandy silt became initially compressive but eventually appeared to provide dilatancy response throughout the entire stress-strain curve The behavior of sandy silt was more difficult to characterize than that of clay and sand due to lower plastic characteristic. Especially, the samples exhibited dilatancy development during shear after failure. The shear behavior and shear strength parameters of sandy silt can be determined as stress-strain behaviors are described by the Mohr-Coulomb failure criterion. The shear behaviors were observed increasing dilatancy volume change tendency with strain-softening tendency after failure. In this paper, the behavior of dilatancy depends on not only sand content but also fine content with low-cohesion during shear in the samples of sandy silt.

Retention Ratio of Dredged Soil at Incheon Habour Route using Self-Weight Consolidation Test (인천지역 항로 준설토의 침강자중압밀시험에 의한 유보율 결정에 관한 연구)

  • Shin, Eun-Chul;Park, Young-Jin;Kang, Jeong-Ku
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Self-weight consolidation test and soil property of dredged soil at Incheon habour route were analyzed to determine the initial dredging reclamation amount, reclamation depth, and estimating the required time of self-weight consolidation with calculation of the final planned height of dredging reclamation site. The moisture content, void ratio and ratio of volume change with elapsed time after throwing were estimated through Yano's empirical equation. As a result, there was a less variation in elements when fine-grained soil content was low as similarly to the behavior of coefficient of sedimentation-consolidation, Cs and the highest variation was shown at the fine-grained soil content of 50%. The retention ratio according to the fine grained soil content that could reinforce the comprehensive aspect of retention ratio for each particle size presented in the standard of estimate for reclamation construction work was calculated and presented using the calculated ratio of volume change.

Unsaturated Soil-Water Characteristics Curve with Silt Contents for Nak-Dong River Sand (실트함유율에 따른 낙동강 모래의 불포화 함수특성곡선)

  • Moon, Hongduk;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.23-33
    • /
    • 2011
  • In this paper, we got soil-water characteristic curve(SWCC) of Nak-Dong River's sand respectively as relative density 40%, 60%, 80% and content of silt 0%, 10%, 20%, 30%. As a result, the more the sand densify in the same silt content and the more the sand has silt in the same relative density, the change of volume water content was decreased. we have known effect of silt contents for SWCC and verified existing empirical formula of SWCC. As experiment results of soil-water characteristic curves compared to the empirical solutions, the results of van Genuchten(1980) and Fredlund & Xing(1994) were well-matched showing S type curves with experiment results. Especially the empirical solution of Fredlund & Xing showed almost same results of the coefficient of correlation($R^2$) equal to 0.99.

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF

Fabrication of Carbon/Basalt Hybrid Composites and Evaluation of Mechanical Properties (탄소/현무암 섬유강화 하이브리드 복합재료의 성형과 기계적 특성 평가)

  • Lee, Jin-Woo;Kim, Yun-Hae;Jung, Min-Kyo;Yoon, Sung-Won;Park, Jun-Mu
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • Carbon Fiber Reinforced Plastic (CFRP) has strong and superb material properties, especially in mechanical and heat-resisting aspects, but the drawback is its high price. In this study, we made a hybrid composite using carbon fiber and basalt fiber, which is expected to attribute to its strong material properties and its financial benefits. We found out that the higher the content of basalt fiber included, the lower the intensity, and carbon's intensity contents of 80% showed the similar intensity level as that of CFRP. Besides it was possible to get a better mechanical properties using the composite that included the mixed fiber, instead of using a composition of separate fibers filed.

Changes on Abrasion Property of Warp Knitted Fabric for Footwear with Various Finishing Agents (가공제 처리에 따른 신발용 경편성물의 마모특성 변화)

  • 전연희;정원영;안승국
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.115-118
    • /
    • 2003
  • 편성물은 루프형태로 얽혀있는 조직의 구조적 특성상 제편 과정에서 필요한 형태로의 성형이 용이해서 제품의 다양화를 기대할 수 있고 우수한 신축성과 드레이프성, 공기함유율, 구김안정성 둥이 우수하여 인체의 여러 가지 활동에 따른 구속감이 적어서 의류용 뿐만 아니라 신발 소재, 산업용 보강제등 그 활용도가 아주 높은 소재이다. 특히 경편성물은 직물과 편성물의 중간체적인 성향을 나타내고 있어서 제품생산시간을 단축할 수 있고 질적인 면에서도 직물과 아주 유사하여 후가공 처리에 유용한 소재이다[1]. (중략)

  • PDF

A Study on the Prediction of Elastic Modulus in Short Fiber Composite Materials (단섬유 복합재료의 탄성계수 예측에 관한 연구)

  • Kim Hong Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.318-324
    • /
    • 2005
  • Theoretical efforts are performed to extend the formulation of NSLT(New Shear Lag Theory) for the prediction of the elastic modulus in short fiber composite. The formulation is based on the elastic stress transfer considering the stress concentration effects influenced by elastic modulus ratio between fiber and matrix. The composite modulus, thus far, is calculated by changing the fiber aspect ratio and volume fraction. It is found that the comparison with FEA(Finite Element Analysis) results gives a good agreement with the present theory (NSLT). It is also found that the NSLT is more accurate than the SLT(Shear Lag Theory) in short fiber regime when compared by FEA results. However, The modulus predicted by NSLT becomes similar values that of SLT when the fiber aspect ratio increases. Finally, It is shown that the present model has the capability to predict the composite modulus correctly in elastic regime.

A Study on Residual Stress of SiC Whisker Reiforced AI Alloy/$ZrO_2$ Joints (SiC 휘스커강화 금속복합재료와 지르코니아 접합체의 잔류응력 해석에 관한 연구)

  • 주재황;박명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.18-26
    • /
    • 1996
  • A two dimensional thermo elasto-plastic finite element stress analysis was performed to study residual stress distributions in AI composites reinforced by SiC whisker and $ZrO_2$ ceramic joints. The influences on the residual stress distributions due to the difference of the reinforcement volume fraction and interlayer material property were investigated. Specifically, stress distributions between AI interlayer material property were investigated. Specifically, stress distributions between AI interlayer and $ZrO_2$ ceramic and between the AI interlayer and AI composite were computationally analzed.

  • PDF

Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites (단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향)

  • 김홍건;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.