• Title/Summary/Keyword: 체적계산

Search Result 533, Processing Time 0.031 seconds

Volume Calculation for Filling Up of Rubbish Using Stereo Camera and Uniform Mesh (스테레오 카메라와 균일 매시를 이용한 매립지의 환경감시를 위한 체적 계산 알고리즘)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we developed the algorithm which computes the waste volume using the stereo camera for enhancing the environment of waste repository. Using the stereo vision camera, we first computed the distortion parameters of stereo camera and then we obtained the points cloud of the object surface by measuring the target object. Regarding the points cloud as the input of the volume calculation algorithm, we obtained the waste volume of the target object. For this purpose, we suggested two volume calculation algorithm based on the uniform meshing method. The difference between the measured volume such as today's one and yesterday's one gives the reposit of waste volume. Using this approach, we can get the change of the waste volume repository by reading the volume reports weekly, monthly and yearly, so we can get quantitative statistics report of waste volume.

Volume Calculation Using Stereo Camera and Non-uniform Mesh (스테레오 카메라와 비균일 메시를 이용한 체적 계산 알고리즘)

  • Lee, Young-Dae;Cho, Sung-Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.429-432
    • /
    • 2012
  • In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. After camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the two volume calculation algorithms based on the triangularmeshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

  • PDF

The Volume Monitoring System of a Landfill Facility Using Stereo Camera Measurement (스테레오 카메라 측정을 이용한 매립장 체적 감시 시스템)

  • Cho, Sung-Yun;Lee, Young-Dae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.5-8
    • /
    • 2013
  • 이 논문에서는 쓰레기 매립의 표준화 및 고도화를 위한 일환으로 쓰레기 체적을 주기적으로 계산하는 알고리즘을 제시하였다. 카메라 캘리브레이션 이후에 대상체의 표면에 대한 포인트 클라우드(point cloud) 데이타를 얻을 수 있었으며 이것을 제시된 체적 계산 알고리즘의 입력이 된다. 균일(uniform) 및 비균일 삼각 격자 기반 메싱(non-uniform triangular meshing) 방법에 기초한 두 개의 체적 계산 알고리즘을 제안하였으며 알고리즘의 타당성을 시뮬레이션과 실제 현장 실험을 통해 입증하였다.

  • PDF

Development of One Dimensional Finite Volume Model Using Riemann Approximate Solver (Riemann 해법을 이용한 1차원 유한체적모형 개발)

  • Kim, Ji-Sung;Han, Kun-Yeun;Ahn, Ki-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.428-432
    • /
    • 2007
  • 댐 제방 등의 붕괴로 인하여 발생하는 급격한 유량의 변화와 흐름영역의 변화로 인한 천이류 및 도수의 발생, 불규칙한 하천단면에서 갈수기 저수기의 흐름해석은 기존의 수치해법의 한계로 인하여 수리모형실험 및 경험식 또는 단면의 단순화 등에 의존하고 있는 실정이다. 본 연구에서는 자연하천에서 비선형 흐름율 계산에 불연속초기조건의 해석해인 Riemann 근사해법을 사용하여 수치적으로 안정되고 정확한 1차원 모형을 개발하고자 한다. 이를 위하여 유한체적법을 사용하였고, 수위와 유량의 계산을 위하여 요구되는 유한체적을 유출입하는 흐름율의 계산에 HLL Riemann 해법을 사용하였으며, MUSCL 기법으로 2차 정확도기법으로 확장하였다. Riemann 해법을 통하여 계산된 비선형의 흐름율과 보존 특성을 만족시켜줄 수 있는 하상 및 하폭변화로 인한 생성항을 처리하는 기법을 제안함으로서 새로운 1차원 수치해석모형을 개발하였다. 개발된 모형의 실제하천의 적용성을 확인하기 위하여 하상과 하폭이 변화하는 부정류 흐름에 적용하여 모형의 적용성 및 정확성을 검증하였다.

  • PDF

The Stereo Camera Measurement of Point Cloud on 3D Object and the Calculation of Volume Based on Irregular Triangular Mesh (스테레오 카메라와 측정에 의한 3D 대상체 포인트 클라우드의 불규칙 삼각 매싱 기반 체적 계산)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. After stereo camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the volume calculation algorithms based on the non-uniform triangular meshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

A Study on the Waste Volume Calculation for Efficient Volume Monitoring in a Landfill Facility (매립장의 효율적인 체적 모니터링을 위한 체적 계산 방법에 대한 연구)

  • Lee, Young Dae;Cho, Sung Youn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.153-159
    • /
    • 2012
  • For the enhancement of civilization of a city, the standard landfill facility is needed for the efficient, and computerized management. In this paper, we proposed the waste volume calculation method using the point cloud of the surface of three dimensional object based on stereo camera measurement. This computes the quantity of waste volume for continuos monitoring. It helps not only to predict the evaluation factor of the usable age of a landfill. facility. Furthermore, it can be used for the basis of general algorithm of three dimensional object.

Calculation and Uncertainty Estimation of the Volume of Reverberation Chamber with Indeterminate Form (부정형 잔향실의 체적 산출과 체적 불착도 평가)

  • Suh, Jae-Gap;Suh, Sang-Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.375-380
    • /
    • 2007
  • A reverberation chamber should be designed and constructed so as to satisfy its purposes and available space. However, it is somewhat difficult to meet the intended design requirements due to various errors from construction process. So, the post-construction measurement of its volume and surface areas is very essential to check the actual volume and volume uncertainty of a reverberation chamber These values should be carefully calculated and accurately estimated since they are used not only to evaluate the acoustic characteristics of building materials but also to calculate uncertainties for other acoustic characteristics. In this work, the method for the calculation and uncertainty estimation of the volume of a reverberation chamber is presented. To this end, the coordinates of all corners was measured with Total Station after construction. The results showed that the calculated volume of the measured reverberation chamber differs by 5 % from the design specification. The expanded volume uncertainty was also estimated to be about 2 % of the total calculated volume.

Development of the Reference Korean Female Voxel Phantom (한국인 기준여성 체적소형 모의체 개발)

  • Ham, Bo-Kyoung;Cho, Kun-Woo;Yeom, Yoen-Soo;Jeong, Jong-Hwi;Kim, Chan-Hyeong;Han, Min-Cheol
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was $1.976{\times}1.976{\times}2.0619\;mm^3$ and the voxel array size is $261{\times}109{\times}825$ in the x, y and z directions. Then, the voxel resolution was changed to $2.0351{\times}2.0351{\times}2.0747\;mm^3$ for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

Body Force Distribution in Permanent Magnet Motors (영구자석 전동기에서의 체적력 분포 관찰)

  • Choi, Hong-Soon;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.659-660
    • /
    • 2006
  • 전기기기에서의 전자기력 계산은 기기의 성능뿐 아니라 기계적 변형, 진동을 예측하는 주요 파라미터이다. 지금까지는 Maxwell stress tensor법이나 자하법, 가상변위법등에 의해 전체 전자기력 또는 토크를 계산하여 왔으나, 이 방법들은 모두 분포 전자기력을 계산할 수 없었다. 본 논문에서는 기기 내부의 체적 전자기력분포를 계산하는 방법을 제시하고, 그 예로써 영구자석형 전동기의 전자기력 분포를 보여준다. 체적력의 계산은 저자에 의해 제안 된 가상공극법에 기반하여 구현할 수 있다.

  • PDF

Liver Cut Method Using 4 Points for Hepatic Volumerty at MDCT Image (MDCT 영상에서 간 체적 계산을 위한 4 점 이용 간 분할 방법)

  • Seo, Jeong-Joo;Cho, Baik-Hwan;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper proposed the method to separate a liver into left and right liver lobes for exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before living donor liver transplantation. On the image of segmented liver, 4 points(the middle point of Inferior Vena Cava, a point of Middle Hepatic Vein, a point of Portal Vein, a middle point of gallbladder fossa) are selected. A liver is separated into left and right liver lobes on the basis of the 4 points. The volume and ratio of the river graft are estimated. The volume estimated using 4 points and the manual volume that radiologist processed and estimated are compared with the weight measured during surgery to support proof of the exact volumetry. After selection the 4 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. This study progressed to ensure donor's and recipient's safe who will undergo the liver transplantation.