• Title/Summary/Keyword: 체결 토크

Search Result 57, Processing Time 0.027 seconds

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.

Prediction of Joining Torque for Bit Depth of Subminiature Bolt (초소형 볼트의 비트 깊이에 따른 체결 토크 예측)

  • Lee, Hyun-Kyu;Park, Keun;Ra, Seung-Woo;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.917-923
    • /
    • 2014
  • Subminiature joining bolts are required for the electronic parts of gadgets such as mobile phones and watch phones. During the miniaturization of bolt heads, it is difficult to obtain sufficient joining force owing to the risk of shear fracture of the bolt head or severe plastic deformation on the bit region. In this study, the maximum joining torque for the bit depth was predicted using finite element analysis. A shear fracture test was conducted on a wire used in bolt forming. The results of this test were subjected to finite element analysis and a fracture criterion was obtained by comparing the experimental and analysis results. The shear fracture of the bolt head during joining was predicted based on the obtained criterion. Furthermore, the maximum joining torque was predicted for various bit depths. Fracture on the boundary between the bolt head and thread was found to occur in lower joining torque as bit depth increases.

Study on the Profile of Nut Bearing Surface and the Torque Coefficient of a High Strength Bolt Set (고장력 볼트세트의 자리면형상과 토크계수에 관한 연구)

  • Lee, Baek Joon;Sohn, Seung Yo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.143-150
    • /
    • 2000
  • Depending upon the combination of tolerances specified in the standards on bolt, nut and washer for high tension bolt sets, there arises center-to-center deviation between bolt and washer. This deviation nay cause loss of effective contact area between nut- and washer-faces, which leads to some dispersion of the torque coefficient K. By adapting circular arc surface instead of flat surface for the nut, it is shown through numerical analyses that the dispersion of the torque coefficient can be minimized. In this way, optimum radius of curvature of the nut bearing surface is proposed.

  • PDF

Study on The Suggested Curve Fitting Algorithm for Bolt Clamping Force Measurement (볼트 체결력 측정을 위해 제안한 커브피팅 알고리즘에 관한 연구)

  • Lee, Ki-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.94-98
    • /
    • 2012
  • In order to serve the exact torque clamping force, the torque measurement system use the curve fitting algorithm by the least square. The corrected least square curve fitting algorithm which suggested in this paper can surpport more exact clamping force for fastner in variable industry field using the torque. At first, This paper introduces mathematical modeling for curve fitting algorithm, and simulate it. As a result, the corrected least square algorithm have shown lower standard error value than that of the used algoritm with torque, and so this corrected least square algorithm prove high accuracy than nomal least square algorithm. The suggested algorithm will contribute to improvement of cost and safety on industry field with bolt clamping force for precision industry parts, electronics parts, aircraft, aerospace, etc.

Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters (고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구)

  • Lee, Hyeon Ju;Nah, Hwan Seon;Kim, Kang Seok;Kim, Jin Ho;Kim, Jin Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Because the torque control method, which is also caled the clamping method in domestic construction sites, is affected by a variation of the torque coefficient, quality control of the torque coefficient is essential. This study was focused to evaluate the effects of several environmental factors and errors when installing bolts while tightening high-strength bolts. Conditioning environmental parameters include wet, rusty and exposure-to-air-only conditions. In addition, because of errors in workability such as instalation of two washers, upset washers are selected. During the tests, torque, torque coefficient, tension and angle of nut rotation were obtained using a bolt testing machine. Test specimens of four types of bolts (High-Strength Hexagon bolt on KS B 1010, Torque Shear Bolt on KS B 2819, High-Strength Hexagon bolt coated with zinc, and ASTM 490 bolt) were recomended. Based on test results, the tightening characteristics subjected to environmental parameters were investigated and compared with the results in normal condition.

Development of the Method for Inspecting the Clamping Force of Torque Shear Bolts Using the Electricity energy of Electric torque wrench (전동렌치 전기에너지를 이용한 토크쉬어볼트의 체결축력 검사기법 개발)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Kim, Kang-Sik;Kim, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • The torque-coefficient of torque-shear type high-strength bolts is affected by the environmental factors, such as 'wet', 'rust', 'exposure to air' and workability during tightening high strength bolts. It is difficult to assume the direct tension induced into the bolt due to variation of torque-coefficient for torque-shear type high-strength bolts. Therefore, it is essential to measure tension loads of bolts and to verify the clamping force under construction. In this study, the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter. The regression analysis equation to measure the direct tension was derived by statistical analysis using Minitab program. It is considered that the trial product is reliable tool to evaluate the tension force comparable to a commercial torque wrench.

Study on Fastened Properties by Applied to CFRP Laminates of Subminiature Screw (초소형나사의 CFRP 적층판 적용에 따른 체결특성에 관한 연구)

  • Choi, Byung Hui;Kim, Ho Joong;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1239-1243
    • /
    • 2014
  • This paper presents the application of carbon-fiber-reinforced polymer (CFRP) for the damage absorption and optimal design of portable smart devices to close in life. CFRP specimens are subjected to a tensile test to estimate their mechanical properties in terms of the stacking angles. Further, the screw reverse torque and screw torque at each stacking angle are determined using a torque tester after tapping holes on the CFRP specimens. Two experiments are performed for comparing their results in order to determine optimal conditions. In the tensile test, a woven specimen is found to have the highest strength and stiffness. In the case of the woven specimen, no difference is observed even when it is applied to prevent loosening of the coating. And average result value was excellent.

Simplified Finite Element Model of an Anchor Bolt Inserted Through Concretes Considering Clamping Forces (체결력을 고려한 콘크리트 삽입 앵커볼트의 간편 유한요소 모델)

  • Noh, Myung Hyun;Lee, Sang Youl;Park, Kyu Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • In this study we proposed a simplified finite element model of anchor bolt system inserted through concrete structures considering clamping forces. The three different finite element types using LS-DYNA are applied for numerical efficiency of the anchor bolt modeling. Combined beam and solid elements are used to reflect the tension state at internal part of anchor bolt due to torques. The clamping forces due to torques are considered by introducing a compression for a nut plane modeled by beam elements. The numerical examples show good agreement with different element types. Parametric studies are focused on the various effects of different element types on the induced axial and shear forces of anchor bolts considering clamping forces.

CPVC Valve Tightening Torque Impact Sockets on the Leaks (CPVC 밸브소켓 체결토크가 누수발생에 미치는 영향)

  • Lim, Chun-Ki;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, the stress applied to screw section, strain, displacement, von Mises stress, and the compression stress applied to the rubber packing for watertightness are estimated with computer simulation when the tightening torque of valve socket is in the range of $10{\sim}130N{\cdot}m$ in order to analyze the influence of valve socket screw section in accordance with the excessive tightening which is supposed to be the cause of water leakage from the synthetic resin piping for fire fighting application of sprinkler equipment, and for the sake of verifying this, adequate value of tightening torque and the value of the compression stress of rubber packing are investigated by examining the number of connected thread for each tightening torque, the deformation state of valve socket and rubber packing and conducting the water hammering test. The result of this test is expected to be utilized as the data required for revising the standard or technical criteria to prevent the water leakage of the synthetic resin piping for fire fighting application.

Comparative Analysis of Bolt Torque Calculation Methods for Space Applications (우주산업용 볼트토크 계산법에 대한 비교 및 실험적 검증)

  • Seo, Ji-Hwan;Kim, Sun-Won;Kim, Chang-Ho;Jun, Hyuoung-Yoll;Jeong, Gyu;Lim, Jae Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.68-75
    • /
    • 2017
  • In this study, the bolt torque calculation method for space industry was compared and verified experimentally. Currently, NASA, European Aerospace Agency, and US National Defense Standards are proposing standards for bolt torque estimation. However, these standards vary slightly and require a high level of comprehension. To address these challenges, we selected typical equations among the widely-used bolt torque calculation methodologies, and the predicted values were verified via clamping force test. In addition, we examined the changes in clamping force associated with handling and refastening.