• Title/Summary/Keyword: 청주 화강암

Search Result 10, Processing Time 0.031 seconds

청주화강암의 U-Pb 스핀 연대

  • 정창식;정연중;길영우;정기영
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.53-53
    • /
    • 2003
  • 남한에 분포하는 현생 화강암류는 트라이아스기-쥬라기의 소위 대보화강암과 백악기-제3기의 불국사화강암으로 분류되어 왔다. 대보조산운동은 대동누층군의 퇴적이후에 일어난 조구조운동을 지칭하므로 트라이아스기의 화강암을 포함하는 대보화강암이라는 명칭은 그와 사실상 직접적인 관계는 없다. 트라이아스기-쥬라기의 화강암은 영덕, 청송 암체 외에는 경상분지 밖에 위치하고 백악기-제3기의 화강암은 속리산, 월악산 암체 외에는 경상분지 안쪽에 주로 분포한다. 트라이아스기-쥬라기의 화강암 중 영광-대전-청주-충주-원주-강릉 방면에 걸쳐 북동-남서 방향으로 분포하는 화강암질 저반은 남한에서 가장 넓은 면적을 차지하는 화강암체지만 신뢰할만한 연대측정 자료가 매우 부족한 실정이다. 이 화강암질 저반에 대해서는 Rb-Sr, K-Ar법이 해답을 주기 어렵다. 예를 들어 청주-음성-증평 지역의 화강암류에 대한 Rb-Sr 전암 자료는 분산이 심하며 약 380 Ma에 해당되는 초시선을 보여 기원물질의 불균질성 내지 불완전한 혼합 효과를 반영하고 있다. 옥천대와 영남육괴에 분포하는 일부 화강암체에 대해 잘못 보고된 Rb-Sr 전암연대 역시 모두 중광물의 U-Pb 연대보다 오래된 값을 보이는 것으로 보아 이들은 생성 당시부터 일정한 $^{87}$ Sr/$^{86}$Sr 초기치를 가지지 않고 Rb/Sr 비에 따른 양(+)의 기울기를 가졌음이 확실하다. 과잉의 방사기원 Ar을 가지거나 폐쇄온도가 낮은 광물들을 대상으로 한 K-Ar 자료 역시 화강암체의 관입편대를 정확하게 지시할 수는 없다. 우리는 이에 대한 연구의 일환으로 충청남도 청원군의 물류센터에서 채취한 중립질의 흑운모화강암 한 시료에 대한 U-Pb 스핀연대측정 결과를 다음과 같이 보고한다. $^{206}$ Pb$^{*}$ /$^{238}$ U age = 174.6$\pm$2.7 Ma $^{207}$ Pb$^{*}$ /$^{235}$ U age = 170.3$\pm$14.6 Ma $^{207}$ Pb$^{*}$ /$^{206}$ Pb sup */ age = 111$\pm$187 Ma 위에서 볼 수 있듯이 청주화강암의 스핀에 대해 콘코던트(concordant)한 연대가 얻어졌으며 자료의 오차, 스핀의 U-Pb계에 대한 폐쇄온도 및 화강암의 솔리더스(solidus)를 고려할 때 $^{206}$ Pb$^{*}$ /$^{238}$ U 연대인 174.6$\pm$2.7 Ma를 관입정치시기로 해석한다. 동일 시료의 흑운모에 대해서는 145 Ma의 Rb-Sr 연대가 얻어졌으며 따라서 관입이후 약 35$0^{\circ}C$까지 대략 1$0^{\circ}C$/Ma의 냉각속도를 구할 수 있었다. 청주화강암의 쥬라기 중기 연대는 영광-대전-청주-충주-원주-강릉 지역의 화강암질 저반이 대동누층군 퇴적 이후에 일어난 지구조 사건과 연관되었을 가능성을 지시하지만 이를 확인하기 위해서는 더 많은 자료가 요구된다. 우리는 현재 충주, 괴산 지역의 화강암체에 대해서도 스핀 연대측정을 수행중에 있으며 이들 자료를 암상을 구분하여 해석한다면 우리나라 중생대 지구조운동에 대한 새로운 사실이 밝혀질 수 있을 것으로 믿는다.

  • PDF

SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd Isotopic Study of the Cheongju granitoid rocks (청주 화강암의 SHRIMP 저어콘 U-Pb 연대, 지구화학 및 Sr-Nd 동위원소 연구)

  • Cheong, Won-Seok;Kim, Yoon-Sup;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.191-206
    • /
    • 2011
  • The emplacement ages, whole-rock geochemistry and Sr-Nd isotopic compositions of granitoid rocks from Cheongju area, South Korea, were investigated for delineating their petrogenetic link to the Jurassic Daebo granitoid rocks. Zircon crystals were collected from the diorite, biotite granite and acidic dyke samples in a single outcrop. Cross-cutting relationships show that the emplacement of diorite was postdated by the intrusion of biotite granite. Both rocks have been subsequently intruded by acidic dyke. The U-Pb isotopic compositions of zircon from the diorite, biotite granite, and acidic dyke were measured using a SHRIMP-II ion microprobe, yielding the crystallization ages of $174{\pm}2Ma$, $170{\pm}2Ma$, and $170{\pm}5Ma$, respectively, with 95% confidence limits ($t{\sigma}$). The emplacement ages are consistent with those determined from the above relative ages. The major and trace element patterns of the rocks are consistent with those of the Jurassic Daebo granitoid rocks, possibly suggesting a subduction-related I-type granite. The geochemical signature is, however, betrayed by the Sr and Nd isotopic compositions of these rocks. The isotopic signatures suggest that the rocks were produced either by the partial melting of lower-crust or by the mantle-derived magma contaminated by the basement rocks during its ascent and/or emplacement. In addition, the inherited ages of zircons of the rocks (ca. 2.1, 1.8, 0.8 and 0.4 Ga) suggest a possible assimilation with crustal rocks from the Gyeonggi massif and Ogcheon metamorphic belt.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Fast Delineation of the Depth to Bedrock using the GRM during the Seismic Refaction Survey in Cheongju Granite Area (굴절법 탄성파탐사 현장에서 GRM을 이용한 청주화강암지역 기반암 깊이의 신속한 추정)

  • Lee, Sun-Joong;Kim, Ji-Soo;Lee, Cheol-Hee;Moon, Yoon-Sup
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.615-623
    • /
    • 2010
  • Seismic refraction survey is a geophysical method that delineates subsurface velocity structure using direct wave and critically refracted wave. The generalized reciprocal method(GRM) is an inversion technique which uses travel-time data from several forward and reverse shots and which can provide the geometry of irregular inclined refractors and structures underlain by hidden layer such as low velocity zone and thin layer. In this study, a simple Excel-GRM routine was tested for fast mapping of the interface between weathering layer and bedrock during the survey, with employing a pair of forward and reverse shots. This routine was proved to control the maximum dip of approximately $30^{\circ}C$ and maximum velocity contrast of 0.6, based on the panel tests in terms of dipping angle and velocity contrast for the two-layer inclined models. In contrast with conventional operation of five to seven shots with sufficient offset distance and indoor data analysis thereafter, this routine was performed in the field shortly after data acquisition. Depth to the bedrock provided by Excel-GRM, during the field survey for Cheongju granite area, correlates well with the elevation of the surface of soft rock from the drill core and SPS logging data. This cost-effective routine developed for quickly delineating the bedrock surface in the field survey will be readily applicable to mapping of weathering zone in narrow zone with small variation of elevation of bedrock.

Study on the Material and Deterioration Characteristics of the Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri, Cheongju, Korea (청주 비중리 석조여래삼존상 및 석조여래입상의 재질특성과 손상특성 연구)

  • Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong;Kim, Yuri
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.778-790
    • /
    • 2021
  • The Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri are state-designated heritage (treasure) statues having the Buddha style of the Goryeo dynasty from the 6th century. Conservation scientific investigations were conducted to understand the preservation status of these stone Buddha statues and to establish a conservation plan. The Stone Seated Buddha Triad and Stone Standing Buddha are composed of fine-medium grained biotite granite, which is considered to be of the same origin owing to their low magnetic susceptibility distribution of less than 0.2 (×10-3 SI unit) and similar mineral characteristics. The Stone Seated Buddha Triad has highly homogenous mineral composition and particle size, whole-rock magnetic susceptibility, and geochemical characteristics very similar to those of the nearby outcrop. It was confirmed that a combination of physical, chemical, and biological factors affects the Stone Buddha statues. In particular, both the Stone Seated Buddha Triad and Stone Standing Buddha tend to be chipped off from the front and cracked and scaled from the back. The Stone Standing Buddha located outdoors experiences granularity decomposition and black algae formation, which accelerate the weathering under unfavorable conservation environments. The result of non-destructive physical property diagnosis using ultrasonic velocity showed that both the Stone Seated Buddha Triad and Stone Standing Buddha have been completely weathered (CW), indicating very poor physical properties.

Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drill-core and Geophysical Well-logging Data (시추 및 물리검층자료의 상관해석을 통한 청주화강암체의 물성 정보 및 절리 분포)

  • Lee, Sun-Jung;Lee, Cheol-Hee;Jang, Hyung-Su;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • To clarify the distribution of joints and fracture zones in the Cheongju granitic mass, we analyzed drill-core and geophysical well-logging data obtained at two boreholes located 30 m from each other. Lithological properties were investigated from the drill-core data and the samples were classified based on the rock mass rating (RMR) and on rock quality designation (RQD). Subsurface discontinuities within soft and hard rocks were examined by geophysical well-logging and cross-hole seismic tomography. The velocity structures constructed from seismic tomography are well correlated with the profile of bedrock depth, previously mapped from a seismic refraction survey. Dynamic elastic moduli, obtained from full waveform sonic and ${\gamma}-{\gamma}$ logging, were interrelated with P-wave velocities to investigate the dynamic properties of the rock mass. Compared with the correlation graph between elastic moduli and velocities for hard rock at borehole BH-1, the correlation points for BH-2 data showed a wide scatter. These scattered points reflect the greater abundance of joints and fractures near borehole BH-2. This interpretation is supported by observations by acoustic televiewer (ATV) and optical televiewer (OTV) image loggings.

Geophysical Imaging of Alluvial Water Table and the underlying Layers of Weathered and Soft Rocks (충적층 지하수면 및 그 하부의 풍화암/연암의 경계면 파악을 위한 복합 지구물리탐사)

  • Ju, Hyeon-Tae;Lee, Chul-Hee;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Although geophysical methods are useful and generally provide valuable information about the subsurface, it is important to recognize their limitations. A common limitation is the lack of sufficient contrast in physical properties between different layers. Thus, multiple methods are commonly used to best constrain the physical properties of different layers and interpret each section individually. Ground penetrating radar (GPR) and shallow seismic reflection (SSR) methods, used for shallow and very shallow subsurface imaging, respond to dielectric and velocity contrasts between layers, respectively. In this study, we merged GPR and SSR data from a test site within the Cheongui granitic mass, where the water table is ~3 m deep all year. We interpreted the data in combination with field observations and existing data from drill cores and well logs. GPR and SSR reflections from the tops of the sand layer, water table, and weathered and soft rocks are successfully mapped in a single section, and they correlate well with electrical resistivity data and SPS (suspension PS) well-logging profiles. In addition, subsurface interfaces in the integrated section correlate well with S-wave velocity structures from multi-channel analysis shear wave (MASW) data, a method that was recently developed to enhance lateral resolution on the basis of CMP (common midpoint) cross-correlation (CMPCC) analysis.

Metamorphic Evolution of the central Ogcheon Metamorphic Belt in the Cheongju-Miwon area, Korea (청주-미원지역 중부 옥천변성대의 변성진화과정)

  • 오창환;권용완;김성원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.106-124
    • /
    • 1999
  • In the Cheongju-Minwon area which occupies the middle part of the Ogcheon Metamorphic Belt, three metamorphic events(M1, M2, M3) had occurred. Intermediate P/T type M2 regional metamorphism formed prevailing mineral assemblages in the study area. Low PIT type M3 contact metamorphism occurred due to the intrusion of granites after M2 metamorphism. M1 metamorphism is recognized by inclusions within garnet. During M2 metamorphism, the metamorphic grade increased from the biotite zone in the southeastern part to the garnet zone in the northwestern part of the study area. This result is similar to the metamorphic evolution of the southwestern part of the Ogcheon Metamorphic Belt. Garnets in the garnet zone are classified into two types; Type A garnet has inclusions whose trail is connected to the foliation in the matrix and Type B garnet has inclusion rich core and inclusion poor rim. Type A garnet formed in the mica rich part with crenulation cleavage whereas Type B garnet formed in the quartz rich part with weak crenulation cleavage. In some outcrops, two types garnets are found together. Compared to the rim of Type A garnet, the rim of Type B garnet is lower in grossular and spessartine contents but higher in almandine and pyrope contents. In some Type B garnets, the inclusion poor part is rimmed by muddy colored or protuberant new overgrowth. In the inclusion poor part and new overgrowth, a rapid increase in grossular and decrease in spessartine is observed. However, the compositional patterns of Type A and B are similar; Ca increases and Mn decreases from core to rim. Two types garnets formed mainly due to the difference of bulk chemistry instead of metamorphic and deformational differences. The metamorphic P-T conditions estimated from Type A garnets are 595-690 OC15.7-8.8 kb, which indicates M2 metamorphism is intermediate P/T type metamorphism. On the other hand, a wide range of P-T conditions is calculated from Type B garnets. The P-T conditions from most Type B garnet rims are 617-690 OC16.2-8.9 kb which also indicates an intermediate P/T type metamorphism. However, at the rim part with flat end or weak overgrowth, grossular content is low and 573-624OC14.7-5.8 kb are estimated. The P-T conditions calculated from plagioclase and biotite inclusions in garnet are 460-500 0C/1.9-3.0 kb. The P-T conditions from rim part with weak overgrowth and inclusions within garnet, indicate that low P/T type M1 regional metamorphism might have occurred before intermediate P/T type M2 regional metamorphism. The P-T conditions estimated from samples which had undergone low PIT type M3 metamorphism strongly, are 547-610 0C/2.1-5.0 kb.

  • PDF

Geological Structure of Okcheon Metamorphic Zone in the Miwon-Boeun area, Korea (미원-보은지역에서 옥천변성대의 지질구조)

  • 강지훈;이철구
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.234-249
    • /
    • 2002
  • The Miwon-Boeun area in the central and northern part of Okcheon metamorphic zone, Korea, is composed of Okcheon Supergroup and Mesozoic Cheongju and Boeun granitoids which intruded it. The Okcheon Supergroup consists mainly of quartzite (Midongsan Formation), meta-calcareous rocks (Daehyangsan Formation, Hwajeonri Formation), meta-psammitic rocks (Unkyori Formation), meta-politic rocks (Munjuri Formation), meta-conglomeratic rocks (Hwanggangni Formation) in the study area, showing a zonal distribution of NE trend. Its' general trend is locally changed into NS to EW trend in and around high-angle fault of NS or NW trend. This study focused on deformation history of the Okcheon Supergroup, suggesting that the geological structure was formed at least by four phases of deformation. (1) The first phase of deformation occurred under ductile shear deformation of top-to-the southeast movement, forming sheath fold or A-type fold, asymmetric isoclinal fold, NW-SE trending stretching lineation. (2) The second phase of deformation took place under compression of NW-SE direction, forming subhorizontal, tight upright fold of M trend in the earlier phase, and formed semi-brittle thrust fault (Guryongsan Thrust Fault) of top-to-the southeast movement and associated snake-head fold in the later phase. (3) The third phase of deformation formed subhorizontal, open recumbent fold through gravitational or extensional collapses which might be generated from crustal thickening and gravitational instability. (4) The fourth phase of deformation formed moderately plunging, steeply inclined kink fold related to high-angle faulting, being closely connected with the local change of NE-trending regional foliation into NS to EW direction of strike in the vicinity of the high-angle fault.