Browse > Article
http://dx.doi.org/10.7854/JPSK.2011.20.4.191

SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd Isotopic Study of the Cheongju granitoid rocks  

Cheong, Won-Seok (Department of Earth & Environmental Sciences, Chungbuk National University)
Kim, Yoon-Sup (Department of Earth & Environmental Sciences, Chungbuk National University)
Na, Ki-Chang (Department of Earth & Environmental Sciences, Chungbuk National University)
Publication Information
The Journal of the Petrological Society of Korea / v.20, no.4, 2011 , pp. 191-206 More about this Journal
Abstract
The emplacement ages, whole-rock geochemistry and Sr-Nd isotopic compositions of granitoid rocks from Cheongju area, South Korea, were investigated for delineating their petrogenetic link to the Jurassic Daebo granitoid rocks. Zircon crystals were collected from the diorite, biotite granite and acidic dyke samples in a single outcrop. Cross-cutting relationships show that the emplacement of diorite was postdated by the intrusion of biotite granite. Both rocks have been subsequently intruded by acidic dyke. The U-Pb isotopic compositions of zircon from the diorite, biotite granite, and acidic dyke were measured using a SHRIMP-II ion microprobe, yielding the crystallization ages of $174{\pm}2Ma$, $170{\pm}2Ma$, and $170{\pm}5Ma$, respectively, with 95% confidence limits ($t{\sigma}$). The emplacement ages are consistent with those determined from the above relative ages. The major and trace element patterns of the rocks are consistent with those of the Jurassic Daebo granitoid rocks, possibly suggesting a subduction-related I-type granite. The geochemical signature is, however, betrayed by the Sr and Nd isotopic compositions of these rocks. The isotopic signatures suggest that the rocks were produced either by the partial melting of lower-crust or by the mantle-derived magma contaminated by the basement rocks during its ascent and/or emplacement. In addition, the inherited ages of zircons of the rocks (ca. 2.1, 1.8, 0.8 and 0.4 Ga) suggest a possible assimilation with crustal rocks from the Gyeonggi massif and Ogcheon metamorphic belt.
Keywords
SHRIMP zircon U-Pb ages; major element; trace element; Sr-Nd isotopes; Cheongju granite; Daebo granite;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 박계헌, 이태호, 이기욱, 2011, 옥천변성대 대향산 규암층 쇄설성 저어콘의 SHRIMP U-Pb 연령. 지질학회지, 47, 423-431.
2 송용선, 박계헌, 서재현, 조희제, 이기욱, 2011, 평창-원주 지역의 경기육괴 기반암 편마암 복합체에 대한 SHRIMP 저어콘 연대측정. 암석학회지, 20, 99-114.
3 윤현수, 홍세선, 이윤수, 2002, 포천-기산리 일대에 분포하는 쥐라기 대보화강암류의 암석 및 암석화학. 암석학회지, 11, 1-16.
4 이기욱, 최승호, 2009, 청주지역 화성암류의 SHRIMP UPb 연대측정. 추계지질과학연합회학술발표회 초록집, p. 215.
5 이종혁, 이민성, 박봉순, 1980, 1:50,000 미원 지질도폭 및 설명서. 자원개발 연구소, 29p.
6 White, A.J.R., and Chappell, B.W., 1983, Granitoid types and their distribution in the Lachlan fold belt, southeast Australia. Geological Society of America Memoir, 159, 21-34.   DOI   ScienceOn
7 Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: Mickibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.), Applications of Micro Analytical Techniques to Understanding Mineralizing Processes. Reviews of Economic Geology 7, 1-35.   DOI   ScienceOn
8 Wilson, M., 1989. Igneous Petrogenesis - A Global tectonic approach, Kluwer Academic Publishers, 466p.
9 김남훈, 송용선, 박계헌, 이호선, 2009, 영남(소백산)육괴 북동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대. 암석학회지, 18, 31-47.
10 권영일, 진명식, 1974, 1:50,000 청주 지질도폭 및 설명서. 국립 지질 광물 연구소, 8p.
11 박계헌, 김명정, 양윤석, 조경오, 2010, 한반도 쥐라기 심성 암의 연령분포. 암석학회지, 19, 269-281.
12 Baier, J., Audtat, A. and Keppler, H., 2008, The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters, 267, 290-300.   DOI   ScienceOn
13 이호선, 박계헌, 송용선, 김남훈, Yuji, O., 2010, 영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대. 암석학회지, 19, 103-108.
14 정창식, 정연중, 길영우, 정기영, 2003, 청주 화강암의 UPb 스핀연대, 한국광물학회 한국암석학회 공동학술발표회 논문집, 53p.
15 정연중, 정창식, 박천영, 신인현, 2008, 정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀연대. 지구과학회지, 29, 539-550.
16 Cheong, C.S. and Chang, H.W., 1996, Geochemistry of the Daebo granitic batholith in the central Ogcheon Belt, Korea: A preliminary report. Economic and Environmental Geology, 29, 483-493.
17 Faure, G., 1986, Principles of isotope geology. John Wiley and Sons, USA, 589p.
18 Claoue-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and $^{40}Ar/^{39}Ar $analysis. In: Berggren, W.A., Kent, D.B., Auberey, M.P. and Hardenbol, J.(eds.), Geochronology Time Scales and Global Stratigraphic Correlation, SEPM (Society for Sedimentary Geology) Special Publication, 54, 3- 21.
19 Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. George Allen & Unwin. London, 450p.
20 DePaolo, D.J., 1981, A Neodymium and Strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86, 10470-10488.   DOI
21 Fedo., C.M., Sircombe, K.N. and Rainbird, R.H., 2003, Detrital zircon analysis of the sedimentary Record. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon. Reviews in Mineralogy & Geochemistry. 53. 277-304.   DOI   ScienceOn
22 Clarke, D.B., 1992, Granitoid rocks. Chapman & Hall, London, 283p.
23 Cheong, C.S. and Chang, H.W., 1997, Sr, Nd, and Pb isotope systematics of granitic rocks in the central Ogcheon Belt, Korea. Geochemical Journal, 31, 17-36.   DOI   ScienceOn
24 Cho, M., 2001, A continuation of Chinese ultrahigh-pressure belt in Korea: evidence from ion microprobe U-Pb zircon ages. Gondwana Research, 4, 708.   DOI   ScienceOn
25 Cho, M., Cheong, W. and Kim, J. 2010, Geochronologic vs. lithotectonic subdivision of central Ogcheon Metamorphic Belt, Korea: Correlation with the Taean Formation and detrital zircon ages of the Hwanggangri Formation. The autumn joint conference, Geological Society of Korea, 61.
26 Kee, W.S., Kim, S.W., Jeong, Y.J. and Kwon, S., 2010, Characteristics of Jurassic continental arc magmatism in South Korea: tectonic implications. Journal of Geology, 118, 305-323.
27 Goldstein, S.J., O'Nions, R.K., Hamilton, P.J., 1984. A $Sm{^{\circ}}{\copyright}$Nd isotopic study of atmospheric dusts and particulate from major river systems. Earth and Planetary Science Letters, 70, 221-236.   DOI   ScienceOn
28 Jwa, 1998, Temporal, spatial and geochemical discriminations of granitoids in South Korea. Resource Geology, 48, 273-284.   DOI   ScienceOn
29 Jwa, 2004, Possible source rocks of Mesozoic granites in South Korea: implications for crustal evolution in NE Asia. Transactions of the Royal Society of Edinburgh: Earth Science, 95, 181-189.   DOI
30 KIGAM (Korea Institute of Geoscience and Mineral Resources), 1995, Geological Map of Korea (1:1,000,000 scale): Sungji Atlas Co., Seoul.
31 Kim J., Yi, K., Jeong, Y.J. and Cheong, C.C., 2011, Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research, 20, 608-620.   DOI   ScienceOn
32 Lan, C.Y., Lee, T., Zhou, X.H., and Kwon, S.T., 1995, Nd isotopic study of Precambrian basement of south Korea: evidence for early Archean crust. Geology, 23, 249-252.   DOI   ScienceOn
33 Lee, S.R., Cho, M., Yi, K.-W. and Stern, R., 2000. Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. Journal of Geology, 108, 729- 738.   DOI   ScienceOn
34 McCulloch, M.T. and Chappell, B.T., 1982, ND isotopic characteristics of S- and I-type granite. Earth and Planetary Science Letters, 58, 51-64.   DOI   ScienceOn
35 Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. and Kim, J.C., 2003a, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25-34.   DOI   ScienceOn
36 Lee, S.R., Cho, M., Cheong, C.S., Kim, H.C. and Wingate, M.T.D., 2003b, Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research, 122, 297-310.   DOI   ScienceOn
37 Ludwig, K.R., 2003, User's manual for Isoplot 3.00 a Geochronogical Toolkit for Mirosoft Excel. Berkeley Geochronology Center Special Publication, 47p.
38 Miller, J.S., Matzel, J.E.P., Miller, C.F. and Burgess, S.D. and Miller, R.B., 2007, Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167, 282-299.   DOI   ScienceOn
39 Pearce, J.A., 1982, Trace element characteristics of lavas from destructive plate boundaries. In Thorpe, R.S., eds. Andesites: Orogenic andesites and related rocks, Wiley, Chichester, 526-547.
40 Paces, J.B. and Miller, J.D., 1993. Precise$ U{^{\circ}}{\copyright}$.Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research 98, 13997-14013.   DOI
41 Rollinson, H.R., 1993, Using geochemical data: evaluation, presentation, interpretation. Pearson, Prentice Hall, 352p.
42 Sun, A.A. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and process. In Saunders, A.D., and Norry, M.J., eds. Magmatism in the ocean basins. Geological Society of London, Special Publication. 42, 313- 345.
43 Wasserburg, G.J., Jacobson, S.B., DePaolo, D.J., McCulloch, M.T. and Wen, T., 1981, Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimca Acta, 45, 2311-2323.   DOI   ScienceOn