• 제목/요약/키워드: 청정수소

검색결과 273건 처리시간 0.039초

탄화수소류로부터 카본블랙에 의한 수소생산 (Hydrogen Production from hydrocarbon by carbon black decomposition)

  • 윤석훈;한기보;박노국;이종대;류시옥;이태진;윤기준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.638-641
    • /
    • 2005
  • 수소는 자원이 무한하고 청결한 에너지이다. 수소는 무공해 청정 대체연료로 사용될 수 있을 뿐만 아니라 풍부한 자원으로부터 얻을 수 있다. 수소에너지는 물을 분해하여 얻거나 화석연료를 수증기개질 또는 부분산화 시킴으로써 얻을 수가 있다. 수소에너지는 1차 에너지를 변환시켜 얻을 수 있는 2차 에너지로서 환경에 대한 부하가 거의 없어 향후 화석연료를 대체할 수 있는 가장 가능성이 높은 에너지이며, 연료전지의 상용화를 앞두고 있어 중요성이 더욱 증대되고 있다. 수소를 생산하는 방법 중 가장 이상적인 방법으로는 물분해함으로써 수소를 제조하는 방법이 있다. 그러나 물분해에 의한 수소생산은 제조비용이 비싸 경제성이 떨어진다는 점과 수소의 대량생산에 필요한 기술확보가 여의치 않아 어렵다. 그러므로 수소를 저 비용으로 대량 생산할 수 있는 수소 제조 기술의 확보가 선행되어야 할 것이다. 현재 상용화되어 있는 수소제조방법은 거의 석유나 천연가스의 수증기 개질에 의한 수소 제조 방법이다. 그러나 이러한 방법은 유해 환경 물질인 CO나 $CO_2$를 배출하는 단점을 지니고 있다. 이러한 단점을 보완키 위한 수소 제조공정의 대안 중 하나는 탄화수소연료의 수소와 탄소로의 직접분해에 의한 수소생산이다. 이 중 원하는 생성물인 수소 외에 부산물이 카본이 동시에 얻을 수 있는 메탄분해에 의한 수소생산방법은 생산된 수소의 약 15%만 연소시킴으로서 필요한 에너지를 공급할 수 있으며, 동시에 지구온난화의 주범인 CO 또는 $CO_2$가 생성되지 않는 장점이 있다. 하지만 메탄을 분해하기 위해서는 매우 높은 에너지가 필요로 하게 된다. 이에 반해 프로판은 메탄보다 낮은 열원에서 분해할 수 있는 장점을 지니고 있다. 본 연구에서는 메탄보다 분해하기 쉬운 프로판을 직접 분해하여 수소를 생산하고자 하였다. 프로판 직접분해반응는 $500\sim750^{\circ}C$의 온도 범위에서 이루어 졌으며, 촉매로서는 국내에서 생산되는 상용촉매인 카본블랙을 이용하였다.

  • PDF

부탄의 직접분해로부터 수소 생산을 위한 카본블랙의 촉매적 작용 (Catalysis of carbon-black for hydrogen production by butane decomposition reaction)

  • 윤석훈;한기보;박노국;류시옥;이태진;윤기준;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.380-383
    • /
    • 2006
  • 수소는 미래의 청정에너지원이다. 수소를 생산하는 효과적인 방법으로는 탄소계촉매를 이용하여 부탄을 분해하는 것이다. 촉매는 카본블랙이 사용되었으며, $500{\sim}1100^{\circ}C$의 온도 범위에서 열분해 반응과 촉매분해반응이 수행되었다. 열분해의 경우 온도가 증가함에 따라 전화율이 증가하여 $800^{\circ}C$에서 98.9%로 부탄이 거의 분해되었으며, $900^{\circ}C$ 이상의 온도에서는 전화율이 100%까지 도달하였다. 부탄 분해반응에서 기대되는 생성물은 메탄, 에틸렌, 에탄, 프로필렌, 프로판 등이다. $1000^{\circ}C$이상의 온도에서는 부탄 촉매 분해반응에서 거의 대부분 수소와 메탄만이 관찰되었다. 특히 $500-1100^{\circ}C$까지 온도가 증가하였을 때 수소의 생성율은 꾸준히 증가하는 것으로 확인되었고 촉매분해반응이 촉매를 사용하지 않은 열분해반응보다 온도가 증가함에 따라 수소의 선택도를 더욱 향상시켜 보다 많은 수소가 생성되었으며, 반응성 실험이 진행되는 동안 촉매의 비활성화는 관찰되지 않았다. 반응전후의 촉매의 특성을 분석하기 위해 TEM 및 SEM 분석을 하였다. 반응전의 촉매는 매끈한 모양이었으나 $1000-1100^{\circ}C$에서 반응후에는 표면에 돌기모양을 형성하는 것을 관찰할 수 있었다.

  • PDF

태양에너지를 이용한 수소제조 (Hydrogen Production by Water Splitting with Solar Energy)

  • 이태규
    • 에너지공학
    • /
    • 제15권2호
    • /
    • pp.96-106
    • /
    • 2006
  • 다양한 수소에너지의 생산방법 중에서 진정으로 청정하고 지속가능한 유일한 기술이 물로부터 수소를 획득하는 태양-수소제조 시스템이다. 태양에너지를 활용한 물로부터 수소생산 연구는 1979년 일본 동경대학의 Honda와 Fujishima 교수의 광전기화학적 방법이 성공적으로 제시된 이래로 매우 많은 연구가 진행되어 오고 있다. 이러한 관심은 가시광 광촉매 제조, 광전기화학전지 등의 개발을 유발하였으며, 융합기술의 하나인 바이오-광촉매 복합시스템 구성 등의 연구를 도출시켰다. 본 고에서는 이들 태양의 광에너지를 직접 활용한 물분해 수소생산 기술을 소개하였으나 태양열을 이용한 수소 제조기술은 포함시키지 않았다.

기능성 나노물질을 포함하는 하이브리드 유기 PEC 셀의 제조 (Preparation of hybrid organic PEC cell with muti-functional nanomaterial)

  • 김민경;정재훈;임동찬
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.266-266
    • /
    • 2015
  • 전 세계적으로 무한한 청정에너지 개발에 대한 연구가 주목받고 있다. 그 중, 수소에너지는 화석연료의 고갈과 환경문제를 동시에 해결할 수 있는 자원이며 수소 생산 방법 중에서도 태양에너지를 이용한 수소 생산 기술은 가장 이상적인 수소 생산 시스템이라 할 수 있다. 대표적인 광전극 소재로는 $WO_3$, ZnO, $Fe_2O_3$, $BiVO_4$ 등과 같은 무기 소재가 주로 사용되고 있으며, 최근에는 Si, CIGS 등과 같은 태양전지와 상기 광전극을 집적하는 탄뎀형 소재/소자가 개발되고 있다. 광전반응이 우수한 전도성 고분자는 광전기화학 전지의 소재로 개발되고 있다. 그러나 유기물의 수중 불안전성 문제 때문에 직접적으로 물에 침전시키는 것이 아니라 외부의 인가 전원용으로 그 사용이 제한적이다. 본 연구에서는 유기계 소재의 direct energy conversion을 위한 효율 및 수중 안정성 향상을 위하여 Ni계 촉매 및 그래핀옥사이드가 융합된 유기기반 광전기화학전지를 개발하였다.

  • PDF

합성가스로부터 연료전지급 수소의 직접 생산을 위한 흡착분리 반응 동시 공정 (Novel Sorption Enhanced Reaction Process for Direct Production of Fuel-Cell Grade $H_2$ from Synthesis Gas)

  • 이기봉;전상구;나정걸;류호정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.745-748
    • /
    • 2009
  • 수소는 지구상에 풍부하게 존재하는 원소로 최근 수소경제시대에 대한 기대와 함께 청정 에너지 carrier로 주목받고 있다. 본 연구에서는 고순도 수소 생산을 위해 water gas shift (WGS) 반응과 $CO_2$의 분리를 하나의 unit operation의 형태로 수행하는 신개념의 thermal swing sorption enhanced reaction (TSSER) 공정의 타당성을 테스트하는데 목적을 두고 있다. Le Chatelier 원리를 기본으로 하는 흡착분리 동시 반응 (sorption enhanced reaction, SER)에서는 수소생산 반응의 열역학적 한계를 극복할 수 있고 정반응의 속도를 증대시킬 수 있다. 본 연구에서는 $K_2CO_3$가 첨가된 hydrotalcite에 대한 고온에서의 $CO_2$ 화학흡착 평형 및 거동 데이터를 실험을 통하여 측정하였다. 또한 WGS 상용촉매와 화학 흡착제를 이용하여 흡착분리 동시 반응을 실험과 수치해석 시뮬레이션으로 수행하였고, 연구결과로부터 연료전지에 사용할 수 있는 고순도의 수소 (~10 ppm CO)를 직접 생산할 수 있으며, 동시에 고압상태의 $CO_2$를 고순도로 포집할 수 있음을 확인할 수 있었다. 고압, 고순도의 $CO_2$ 포집은 이후 $CO_2$ 저장에 용이하게 이용되어 온실가스 저감에 기여할 수 있을 것으로 기대된다.

  • PDF

유기금속 할라이드 페로브스카이트 기반 광전기화학 셀을 이용한 수소 생산 기술의 동향과 전망 (Recent Research Trend in Organometal Halide Perovskite-Based Photoelectrodes for Efficient Solar Hydrogen Production)

  • 최호중;서세훈;이상한
    • 공업화학전망
    • /
    • 제24권1호
    • /
    • pp.14-24
    • /
    • 2021
  • 최근 전 세계적으로 이산화탄소를 포함한 대기 오염원의 배출을 줄이고 화석연료를 대체할 수 있는 차세대 청정에너지원으로 '수소'를 주목하고 있다. 하지만 현재까지 사회에 유통되는 대부분의 수소는 화석연료 개질을 기반으로 생산되기 때문에 2차 환경오염의 위험을 가지고 있다. 이에 이산화탄소 배출이 없이 태양에너지로부터 물을 분해해 수소를 생산하는 광전기화학 수소 생산 기술이 주목받고 있다. 단 광전기화학 물분해 수소생산을 실현하기 위해서는 수소를 충분히 생산시킬 수 있는 충분한 전류밀도, 과전압을 최소화하는 높은 개시전위, 및 그 생산비용을 최소화 할 수 있는 저렴한 공정 등을 동시에 만족시킬 수 있는 광전극 소재 개발이 필요하다. 최근 광소자용 소재로 각광을 받는 유기금속 할라이드 페로브스카이트 소재가 상기의 조건들을 상당히 만족할 것으로 기대되고 있어 광전기화학 물분해 셀로 적용되는 연구들이 수행되고 있다. 본 기고문에서는 유기금속 할라이드 페로브스카이트 소재기반 광전기화학 물분해 관련 최신 연구동향과 전망을 다루고자 한다.

알럼 슬러지를 이용한 입상흡착제 압출 및 황화수소 제거 성능 (Extrusion of Pellet-type Adsorbents Employed with Alum Sludge and H2S Removal Performance)

  • 박나영;배정현;이철호;전종기
    • 청정기술
    • /
    • 제19권2호
    • /
    • pp.121-127
    • /
    • 2013
  • 본 연구의 목적은 알럼 슬러지를 사용하여 입상흡착제를 제조하기 위한 압출 공정을 최적화하는 것이다. 함수율과 바인더인 메틸 셀룰로스의 함량이 압출 가능성과 입상흡착제의 물리적 특성에 미치는 영향을 연구하였다. 입상흡착제의 물리적 특성은 질소 흡착실험과 압축 강도 측정을 통해서 분석하였다. 증류수와 알럼 슬러지 가공분말의 비가 63/100인 경우가 입상흡착제의 외형이 원통형으로 잘 성형되었고, 압축강도도 가장 높게 나타났다. 메틸 셀룰로스의 함량을 증가시키면 압축강도가 개선되었으나 비표면적이 감소하였다. 성형된 입상흡착제의 소성과정을 거치면 입상흡착제의 표면적이 크게 증가하여 황화수소의 파과 시간이 획기적으로 증가하였으며, 황화수소 파과 용량은 1,700 mg/g 이상을 얻을 수 있었다.

천연가스 열분해법에 의한 수소 및 탄소 제조 (Production of Hydrogen and Carbon Black Using Natural Gas Thermal Decomposition Method)

  • 장훈;이병권;임종성
    • 청정기술
    • /
    • 제10권4호
    • /
    • pp.203-213
    • /
    • 2004
  • 천연가스의 열분해법은 천연가스 (CH4)를 고온에서 분해 시켜 수소와 탄소로 전환시키는 기술이다. 천연가스 열분해법의 가장 큰 장점은 이산화탄소의 발생 없이 수소와 탄소를 만드는 것이다. 본 연구에서는 이와같이 천연가스 고온 열분해법을 이용하여 메탄으로부터 수소와 탄소의 생성을 연구하였다. 실험을 통하여 메탄의 고온 열분해시 pyrocarbon이 반응관 내벽에 생성되며 그 위에 탄소가 퇴적되는 plugging 현상이 발생한다는 것을 알 수 있었다. 이 문제를 해결하기 위하여 본 연구에서는 이중관 반응기법, 반응 중간에 주기적으로 $O_2$$CO_2$로 퇴적된 탄소를 산화시키는 방법 등을 시도하였으며, 그 결과 어느 정도의 탄소 퇴적 현상을 해결할 수 있었다. 또한 SEM (Scanning Electron Microscope) image를 사용하여 탄소 입자의 크기를 측정하였으며 그 크기는 약 200 nm정도였다.

  • PDF

분리막을 이용한 바이오가스의 메탄 자원화 (Resourcing of Methane in the Biogas Using Membrane Process)

  • 박영규;양영선
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.406-414
    • /
    • 2014
  • 바이오가스 내 주요성분은 메탄 45~75%, 이산화탄소 30~50% 그리고 황화수소 0.3% 및 수증기가 함유하고 있다. 바이오가스로부터 이산화탄소와 황화수소를 제거하기 위해 흡수공정과 분리막공정을 이용한 메탄가스 자원화연구가 수행되고 있다. 본 논문에서는 바이오가스성분으로 조제한 조제가스를 이용하여 폴리설폰으로 제조한 분리막을 이용하여 메탄을 95% 까지 분리정제하기 위한 실험을 수행하였다. 분리막에 의하여 이산화탄소와 메탄의 분리를 위해 공급원료와 혼합가스의 투입압력의 효과를 연구하였고 0.3% 황화수소를 처리하기 위한 방법으로 킬레이트화합물을 사용하였다.

프로판 탈수소화 반응용 백금촉매의 코크 생성에 미치는 수소비와 주석첨가의 영향 (Effect of Hydrogen Ratio and Tin Addition on the Coke Formation of Platinum Catalyst for Propane Dehydrogenation Reaction)

  • 김수영;김가희;고형림
    • 청정기술
    • /
    • 제22권2호
    • /
    • pp.82-88
    • /
    • 2016
  • 코크에 의한 촉매의 불활성화는 산업현장에서 촉매가 사용되는 동안 매우 중요하다. 본 연구에서는 프로판 탈수소 반응을 위한 Pt-Sn 촉매에서 반응조건인 수소의 비율이 코크생성에 미치는 영향과 코크버닝에 의한 촉매 활성의 회복여부, 그리고 코크양에 따른 코크버닝 중의 백금소결여부, Pt-Sn-K 촉매에서 Sn의 함량이 코크생성과 불활성화에 미치는 영향을 확인하고자 하였다. Pt-Sn-K는 Pt와 Sn, K를 순차적으로 각각 θ-알루미나와 γ-알루미나에 담지 하여 제조하였다. 프로판 탈수소 반응은 먼저 반응물중의 수소비를 달리하여 620 ℃에서 수행한 후, 코크버닝을 통해 재생하고 다시 프로판 탈수소 성능을 비교하였다. 재생촉매의 B.E.T 분석과 코크분석, XRD (X-ray diffraction)와 같은 물리분석을 동시에 수행하였다. 촉매의 활성테스트와 특성분석을 통하여 반응물 상에서 수소의 비와 촉매의 Sn함량이 촉매표면의 코크 형성에 영향을 줄 수 있다는 것을 알 수 있다. 또한, 과량의 코크는 Air 재생 과정에서의 백금입자의 소결을 일으키고 촉매의 활성을 저하시킬 수 있다.