• 제목/요약/키워드: 철자오류

검색결과 86건 처리시간 0.02초

단어 간 연관성 측정을 통한 문맥 철자오류 교정 (Context-sensitive Spelling Correction using Measuring Relationship between Words)

  • 최성기;김민호;권혁철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1362-1365
    • /
    • 2013
  • 한국어 텍스트에 나타나는 오류어의 유형은 크게 단순 철자오류와 문맥 철자오류로 구분할 수 있다. 이중 문맥 철자오류는 문맥의 의미 통사적 관계를 고려해야만 해당 어휘의 오류 여부를 알 수 있는 오류로서 철자오류 중 교정 난도가 가장 높다. 문맥 철자오류의 유형은 발음 유상성에 따른 오류, 오타 오류, 문법 오류, 띄어쓰기 오류로 구분할 수 있다. 본 연구에서는 오타 오류에 의해 발생하는 문맥 철자오류를 어의 중의성 해소와 같은 문제로 보고 교정 어휘 쌍을 이용한 통계적 문맥 철자오류 교정 방법을 제안한다. 미리 생성한 교정 어휘 쌍을 대상으로 교정 어휘 쌍의 각 어휘와 주변 문맥 간 의미적 연관성을 통계적으로 측정하여 문맥 철자오류를 검색하고 교정한다. 제안한 방법을 적용한 결과 3개의 교정 어휘 쌍 모두 90%를 넘는 정확도를 보였다.

언어 사용환경에 적응적인 영어 문맥의존 철자오류 교정 기법 (Adaptive English Context-Sensitive Spelling Error Correction Techniques for Language Environments)

  • 김민호;김경식;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.133-136
    • /
    • 2015
  • 문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.

  • PDF

규칙의 일반화와 통계 방식을 결합한 한국어 문맥의존 철자오류 교정규칙의 재현율 향상 (Improving Recall for Context-Sensitive Spelling Correction Rules by Combining Rule-Generalization and Statistical Method)

  • 최현수;권혁철;윤애선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.18-23
    • /
    • 2014
  • 한국어 맞춤법 검사기는 전자화된 한국어 텍스트에 나타난 오류어를 검색하여 이를 교정할 대치어를 제시하는 시스템이다. 이때 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 정확하지만, 문맥을 고려하였을 때 오류가 되는 유형으로 교정 난도가 매우 높다. 문맥의존 철자오류의 교정 방법은 크게 규칙을 이용한 방법과 통계 정보에 기반을 둔 방법으로 나뉜다. 이때 규칙을 이용한 방법은 그 특성상 정확도가 매우 높지만, 반대로 재현율이 매우 낮다. 본 논문에서는 본 연구진이 기존에 연구하였던 규칙을 일반화하는 방식에 추가로 조건부 확률을 이용한 통계 방식을 결합하여 정확도를 유지하면서 재현율을 향상시키는 방법을 제안한다.

  • PDF

한글 편집거리 알고리즘을 이용한 한국어 철자오류 교정방법 (A Method for Spelling Error Correction in Korean Using a Hangul Edit Distance Algorithm)

  • 박승현;이은지;김판구
    • 스마트미디어저널
    • /
    • 제6권1호
    • /
    • pp.16-21
    • /
    • 2017
  • 컴퓨터가 상용화되면서 일반인들은 문서를 작성하기 위해 컴퓨터를 이용하는 방법을 자주 사용하게 되었다. 컴퓨터를 이용하여 문서를 작성하는 방법은 작성 속도가 빠르고 손의 피로가 적지만 철자오류가 발생할 확률이 매우 높다. 보통 철자오류는 발견하기 쉽기 때문에 곧바로 수정이 가능하지만, 사용자의 지식 부족 혹은 눈에 잘 띄지 않는 철자오류도 존재하기 때문에 철자오류가 존재하지 않는 문서를 작성하기 어렵다. 온라인상에서는 문서 작성에 대한 규칙 및 예절이 미비하기 때문에 철자오류에 의한 문제가 적지만 중요문서에서 발생하는 철자오류는 신뢰도 하락과 같은 큰 문제를 일으킨다. 철자오류 교정은 전문가 또한 완벽하게 수행하기 힘들기 때문에 비전문가인 일반인들을 위한 교정방법연구가 필요하다. 본 논문에서는 한글 편집거리 알고리즘을 이용해 철자오류를 교정하는 연구를 진행한다. 이전 연구를 통해 검출한 철자오류를 수집한 말뭉치 사전에서 등장하는 단어 중 철자오류 단어와 가장 유사한 단어를 발견하여 주위 단어와의 동시등장빈도를 계산하는 것으로 철자오류 교정을 수행하게 된다.

SNS 채팅 데이터에 적응적인 Self-Attention 기반 문맥의존 철자오류 교정 시스템 (Adaptive Context-Sensitive Spelling Error Correction System Based on Self-Attention for Social Network Service Chatting Data)

  • 최혜원;장대식;손동철;이승욱;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.362-367
    • /
    • 2019
  • 본 논문에서는 Self-Attention을 활용한 딥러닝 기반 문맥의존 철자오류 교정 모델을 제안한다. 문맥의존 철자오류 교정은 최근 철자오류 교정 분야에서 활발히 연구되고 있는 문제 중 하나이다. 기존에는 규칙 기반, 확률 기반, 임베딩을 활용한 철자오류 교정이 연구되었으나, 아직 양질의 교정을 수행해내기에는 많은 문제점이 있다. 따라서 본 논문에서는 기존 교정 모델들의 단점을 보완하기 위해 Self-Attention을 활용한 문맥의존 철자오류 교정 모델을 제안한다. 제안 모델은 Self-Attention을 활용하여 기존의 임베딩 정보에 문맥 의존적 정보가 반영된 더 나은 임베딩을 생성하는 역할을 한다. 전체 문장의 정보가 반영된 새로운 임베딩을 활용하여 동적으로 타겟 단어와의 관련 단어들을 찾아 문맥의존 철자 오류교정을 시행한다. 본 논문에서는 성능평가를 위해 세종 말뭉치를 평가 데이터로 이용하여 제안 모델을 실험하였고, 비정형화된 구어체(Kakao Talk) 말뭉치로도 평가 데이터를 구축해 실험한 결과 비교 모델보다 높은 정확율과 재현율의 성능향상을 보였다.

  • PDF

철자오류에 기인한 가의미 오류의 검출 및 교정 방법 (A Method for Detection and Correction of Pseudo-Semantic Errors Due to Typographical Errors)

  • 김동주
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권10호
    • /
    • pp.173-182
    • /
    • 2013
  • 전자 문서의 초안 작성과정에서 추가되는 철자오류는 다른 유형의 오류보다 압도적으로 높은 비율을 차지한다. 입력 실수로 인한 이들 오류는 결과적으로 여전히 철자오류일 수도 있지만 상당수는 구문오류나 의미오류로 발전한다. 이러한 오류들 중 철자오류에서 발전된 가의미 오류는 순수 의미오류에 비해 문장 내에서 주변 단어의 의미에 대해 두드러진 상이성을 갖게된다. 따라서 이러한 의미 오류는 그것이 가지는 두드러진 문맥 상이성으로 인해 간단한 동시발생 빈도에 기초한 알고리즘으로 검출 및 교정이 가능하다. 본 논문에서는 이러한 오류들을 검출하고 교정하기 위한 동시발생 빈도에 기초한 알고리즘을 제안한다. 제안하는 방법에서 동시발생 빈도는 의존 구조상에서 직접 의존관계에 놓인 단어만을 대상으로 계산하며, 가의미 오류 여부를 판단하기 위해서 코사인 유사도 측정 방법을 사용한다. 제시하는 실험으로부터 제안한 방법은 전체 맞춤법 검사기 검출율을 약 2~3% 수준까지 향상 시킬 수 있을 것으로 예측하였다.

Feed-Forward Neural Network를 이용한 문맥의존 철자오류 교정 (Context-sensitive Spelling Error Correction using Feed-Forward Neural Network)

  • 황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.124-128
    • /
    • 2015
  • 문맥의존 철자오류는 해당 단어만 봤을 때에는 오류가 아니지만 문맥상으로는 오류인 문제를 말한다. 이러한 문제를 해결하기 위해서는 문맥정보를 보아야 하지만, 형태소 분석 단계에서는 자세한 문맥 정보를 보기 어렵다. 본 논문에서는 형태소 분석 정보만을 이용한 철자오류 수정을 위한 문맥으로 사전훈련(pre-training)된 단어 표현(Word Embedding)를 사용하고, 기존의 기계학습 알고리즘보다 좋다고 알려진 딥 러닝(Deep Learning) 기술을 적용한 시스템을 제안한다. 실험결과, 기존의 기계학습 알고리즘인 Structural SVM보다 높은 F1-measure 91.61 ~ 98.05%의 성능을 보였다.

  • PDF

말뭉치를 기반으로 한 한국어 철자 교정기의 구현 (Korean Spelling Corrector Based on Corpus Analysis)

  • 이병훈;윤준태;송만석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.285-293
    • /
    • 1993
  • 대량의 말뭉치에서 나타나는 맞춤법 오류의 대부분은 타자수의 입력 실수로 인한 것이다. 맞춤법 오류의 유형은 크게 띄어 쓰기 오류, 철자 오류, 띄어 쓰기와 철자의 복합 오류의 세 가지로 나타난다. 이 중, 철자 오류를 표층 형태만으로 표준어 오류, 조사/어미 오류, 자소 대치 오류로 유형을 분류하였다. 본 논문은 300만 말뭉치에서 형태소 분석이 실패한 맞춤법 오류 어절 중에서 띄어 쓰기와 철자 오류를 분석하여, 각 오류 유형에 따른 교정 방법과 자소 대치 규칙 베이스를 이용한 교정 방법을 구현하였다. 또한 형태소 분석기를 거친 40만 어절 사전을 이용한 분석기로 기존의 형태소 분석기를 대치시켜 교정 어절을 검증하였고, 위의 사전에서 추출한 순위 결정 요소와 Heuristic 정보를 이용하여 각 후보 어절에 대한 가중치를 계산하고 가능성이 높은 교정 어절을 제시하는 시스템을 구현하였다.

  • PDF

동적 윈도우를 갖는 조건부확률 모델을 이용한 한국어 문맥의존 철자오류 교정 규칙의 재현율 향상 (Improving Recall for Context-Sensitive Spelling Correction Rules using Conditional Probability Model with Dynamic Window Sizes)

  • 최현수;권혁철;윤애선
    • 정보과학회 논문지
    • /
    • 제42권5호
    • /
    • pp.629-636
    • /
    • 2015
  • 한국어 맞춤법 검사기가 교정하는 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이 중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 올바르지만, 문맥을 고려하였을 때 오류가 되는 유형으로, 교정 난도가 매우 높다. 문맥의존 철자오류는 글을 쓰는 사람들도 자주 저지르는 오류이므로, 이를 잘 검색하여 정확하게 교정하는 것이 맞춤법 검사기의 사용자가 갖는 신뢰도에 큰 영향을 미친다. 높은 정확도가 매우 중요하므로, 문맥의존 철자오류의 교정 방법은 대부분 규칙에 기반한다. 반대 급부로 재현율이 매우 낮다는 단점을 갖는다. 문맥의존 철자오류의 교정에서 재현율을 높이기 위한 방법은 크게 언어지식을 이용하여 규칙을 일반화하는 방법과 통계 정보에 기반을 하여 공기 어휘의 제약 조건을 확장하는 방법으로 나뉠 수 있다. 기존 연구는 언어지식을 이용하여 규칙을 일반화하는 다양한 방식을 연구했으나, 최고 성능이 평균 정확도 95.19%, 평균 재현율 37.56%을 보였다. 본 논문에서는 통계정보에 기반한 규칙의 확장 방식을 제안한다. 동적 윈도우를 갖는 조건부확률 모델을 이용한 방법이며, 최고 성능은 평균 정확도 97.23%, 평균 재현율 50.50%을 보여주었다.

Default 연산 알고리즘을 적용한 통계적 문맥의존 철자오류 교정 기법의 성능 향상 (Improving the Performance of Statistical Context-Sensitive Spelling Error Correction Techniques Using Default Operation Algorithm)

  • 이정훈;김민호;권혁철
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.165-170
    • /
    • 2016
  • 본 논문에서 제안하는 문맥의존 철자오류 교정은 통계 정보를 이용한 방법으로 통계적 언어처리에서 가장 널리 쓰이는 샤논(Shannon)이 발표한 노이지 채널 모형(noisy channel model)을 기반으로 한다. 선행연구에서 부족하였던 부분의 성능 향상을 위해 교정대상단어의 오류생성 및 통계 데이터의 저장 방식을 개선하여 Default 연산을 적용한 모델을 제안한다. 선행 연구의 모델은 교정대상단어의 오류생성 시 편집거리의 제약을 1로 하여 교정 실험을 하지만 제안한 모델은 같은 환경에서 더욱 높은 검출과 정확도를 보였으며, 오류단어의 편집거리(edit distance) 제약을 넓게 적용하더라도 신뢰도가 있는 검출과 교정을 보였다.

  • PDF