• 제목/요약/키워드: 철도 차량 동역학

검색결과 78건 처리시간 0.021초

포장가속시험시설의 동역학 힘 예측 및 강도설계에 관한 연구 (A Study of Dynamis Force Estimation and Strength Design of KALES)

  • 김낙인;양성철;박용걸
    • 한국강구조학회 논문집
    • /
    • 제13권2호
    • /
    • pp.211-221
    • /
    • 2001
  • 본 연구에서는, 포장가속시험시설이 사용 중 발생 가능한 동역학적 힘을 예측하기 위해, 이미 개발되어 운용중인 모형시험시설을 이용하여 차량 운동방정식을 구하고, 모형시험시설과 포장가속시험시설(KALES : Korea Accelerated Loading and Environmental Simulator)의 상사관계를 이용하여 KALES가 운행 중 발생할 수 있는 동역학적인 힘을 예측하였다. 이를 기반으로 실제 차량 구조부 형상에 대한 상세설계를 전산해석과 피로수명평가 방법을 이용하여 수행하였다. 해석 결과, 동역학적 모형화 및 피로강도 해석기술을 기반으로 설계된 KALES는 시험 중 발생되는 사용하중 이력에 대해서 피로 강도적으로 충분한 안전성이 확보되도록 설계됨을 확인할 수 있었다.

  • PDF

전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구 (A Study on the Dynamic Characteristics of the Bi-modal Tram with All-Wheel-Steering System)

  • 이수호;문경호;전용호;이정식;김덕기;박태원
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.444-450
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계 (Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model)

  • 박찬경;이광기
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

종곡선과 평면곡선 경합을 고려한 승차감 평가기법에 관한 연구 (A Study on Evaluation Method of Ride Comfort Considering Superimposition of Vertical and Horizontal Curve)

  • 엄주환;양신추;김은겸;최일윤;강윤석
    • 한국철도학회논문집
    • /
    • 제13권3호
    • /
    • pp.309-316
    • /
    • 2010
  • 철도선형에서 평면곡선과 종곡선의 경합은 차량의 주행안정성, 승차감, 그리고 궤도유지보수비에 많은 영향을 끼친다. 그러나 신선건설 혹은 기존선 개량 시 기존의 고정점(터널, 교량, 분기기, 전차선주 등)들과 예기치 않은 주위 환경조건들에 의해 부득이 부설될 경우가 발생된다. 본 연구에서는 평면곡선과 종곡선 경합 시 승차감 측면에서의 최적 평면선형 설계를 위한 승차감 목적함수를 도출하고 차량동역학 해석을 통해 검증하였다. 또한 제시된 승차감 목적함수를 이용해 승차감이 최대가 되는 선형조건을 간단히 평가할 수 있는 해법알고리즘을 제시하였다.

유한 요소 해석 기법을 이용한 고속 철도 차량의 집전 성능 해석 (Analysis of the Current-Collection Performance of a High-Speed Train Using Finite Element Analysis Method)

  • 정성필;박태원;김영국;박찬경;백진성
    • 대한기계학회논문집A
    • /
    • 제35권7호
    • /
    • pp.827-833
    • /
    • 2011
  • 본 논문에서는 상용 유한 요소 해석 프로그램인 SAMCEF 를 이용하여 고속 철도 차량의 집전성능을 예측할 수 있는 해석 모델을 개발하였다. 3 자유도 스프링-댐퍼-질량의 판토그래프 모델을 생성하였고, 실제 시스템과의 리셉턴스를 비교함으로써 신뢰성을 검증하였다. UIC 799 OR 기준에서 제시한 가선계의 이론적 파동전파 속도와 가선계 유한 요소 해석 모델에서 측정한 파동 전파 속도를 비교 하였다. 드로퍼의 길이를 조절하여 전차선의 중력에 의한 초기 처짐 현상을 구현하였다. 가선계와 판토그래프를 접촉 요소를 이용하여 연성하였으며, 판토그래프가 300 km/h 및 370 km/h 로 주행할 때의 접촉력 변화를 도출하였다. 접촉력의 평균, 표준편차, 최대 및 최소값 등을 분석함으로써 본 논문에서 제시한 해석모델의 유효성을 검증하였다.

동력분산형 차세대고속전철의 충돌안전도 개념설계 연구 (A Study on Conceptual Design for Crashworthiness of the Next Generation High-speed EMU)

  • 김거영;조현직;구정서
    • 한국철도학회논문집
    • /
    • 제11권3호
    • /
    • pp.300-310
    • /
    • 2008
  • 본 논문에서는 국내철도차량안전기준의 충돌안전 요구사항을 만족하는 동력 분산형 고속전철의 충돌안전도 개념설계에 대하여 연구하였다. 국내안전기준에는 36km/h 열차 대 열차 충돌, 15ton 변형체 장애물과 110km/h 충돌 등 2가지 중충돌 사고에 대한 충돌안전성능을 요구한다. 한국형 분산형 차세대고속열차는 17ton 축중의 동력집중형 KTX와 달리 13ton 축중을 가지는 2TC-6M로 구성된다. 이론적 수치적 해석을 통하여 주요 압괴구조 및 부품의 평균압괴하중과 변형량을 에너지 흡수 관점에서 충돌안전도 개념설계안으로 도출하였다. 도출된 개념 설계안은 1차원 막대-스프링-댐퍼-질량 동역학 시뮬레이션 결과로부터 국내 충돌안전기준을 잘 만족시킬 수 있음을 보였다.

차세대 고속철도의 안정성 및 안전성 해석 (Stability and Safety Analysis on the Next Generation High-Speed Railway Vehicle)

  • 조재익;박태원;윤지원;김지영;김영국
    • 한국철도학회논문집
    • /
    • 제13권3호
    • /
    • pp.245-250
    • /
    • 2010
  • 본 논문에서는 안정성과 안전성 해석을 통하여 차세대 고속철도(HEMU-400X)의 주행성능을 예측하였다. 차량의 설계단계에서 주행성능을 예측하는 것은 차량의 안전 확보를 위해 매우 중요하다. 안정성 해석을 통하여 차륜의 등가 답면구배에 따른 임계속도를 계산하였다. 임계속도는 UIC518에 근거하여 등가 답면구배 0.15에서 400km/h가 달성 가능함을 보였다. 또한 안전성 해석을 통하여, 동역학 모델의 횡방향과 수직방향의 가속도 값을 시뮬레이션 하였다. 안정성 해석은 UIC518에 근거하여 440km/h의 속도로 30km의 구간을 주행하였다. 그리고 계산된 값들은 모두 UIC518의 최대 허용 가속도 값보다 적게 나타나는 것을 확인하였다.

신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화 (Optimization of Design Variables of Suspension for Train using Neural Network Model)

  • 김영국;박찬경;황희수;박태원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1086-1092
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of a given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a mega model that has a regression model made by sampling data through simulation. In this paper, the neural network is used a mega model that have twenty-nine design variables and forty-six responses. After this mega model is constructed, multi-objective optimal solutions are achieved by using the differential evolution. This paper shows that this optimization method using the neural network and the differential evolution is a very efficient tool to solve the complex optimization problem.

  • PDF

신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화 (Optimization of Design Variables of a Train Suspension Using Neural Network Model)

  • 김영국;박찬경;황희수;박태원
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.

철도차량을 위한 동역학 해석 프로그램 개발 (Development of a Dynamic Simulation Program for Railway Vehicles)

  • 조재익;박태원;윤지원;김영국
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.473-479
    • /
    • 2009
  • Dynamic analysis is necessary for the High-Speed Railway vehicle which aims to run on max 400km/h. Especially, dynamic simulation using CAE(Computer Aided Engineering) can help to reduce the time of development of the High-Speed Railway vehicles. Also, it helps to reduce prices and improve the quality such as safety, stability and ride. There are many dynamic software for a railway vehicle, such as Vampire and ADAMS-Rail. There are limitations for each software and difficulties to analyze overall dynamics for entire railway system. To overcome these limitations, in this study, a program which can simulate entire railway vehicles was developed. This program is easy to use because it was developed using C++, which is object-oriented programming language. In addition, the basic platform for the development of dynamic solver is prepared using the nodal, modal coordinate system with a wheel-rail contact module. Rigid, flexible and large deformable body systems can be modeled by a user according to the characteristic of a desired system. Its reliability is verified by comparison with a commercial analysis program.

  • PDF