• Title/Summary/Keyword: 철도 안전 시스템

Search Result 783, Processing Time 0.028 seconds

Image Features Based Secure Access Control for Data Content Protection (데이터 내용 보호를 위한 이미지 특징 기반의 보안 접근 제어)

  • Ha, Sunju;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.171-180
    • /
    • 2013
  • Data security is always an important issue. In particular, the current emerging cloud computing system inevitably raises the issue of data security. However, data security is no longer safe with a simple way, but requires rather advanced method to secure the data. In this paper, instead of exploiting the existing text-based cryptography approach an image-based access control of data content is studied to present a higher level of data security. Color key chain is generated both using histogram value of the original image, and the location information and featured color information extracted by geometric transformation to form the security key to access secure data content. Finally, the paper addresses design interface and implementation for data content access control for evaluation of the proposed scheme.

Evaluation of Shear Load Carrying Capacity of Lateral Supporting Concrete Block for Sliding Slab Track Considering Construction Joint (타설 경계면을 고려한 슬라이딩 궤도 횡방향 지지 콘크리트 블록의 전단 내하력 평가)

  • Lee, Seong-Cheol;Jang, Seung Yup;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • Recently several researches have been conducted to develop sliding track system in which friction between concrete track and bridge slab has been reduced. This paper investigated shear load carrying capacity of lateral supporting concrete block which should be implemented to resist lateral load due to train in sliding track system. In order to evaluate shear load carrying capacity of lateral supporting concrete block, analytical model has been developed considering concrete friction and rebar dowel action along construction joint. The proposed model predicted test results on the shear load carrying capacity from literature conservatively by 13~23% because effect of aggregate interlock along crack surface was neglected. Since construction joint status is ambiguous on construction site, it can be concluded that the proposed model can be used for reasonable design of lateral supporting concrete block. Based on the proposed model, design proposal for lateral supporting concrete block has been established.

Development of an Earthquake-Resistant Model for a High-Level Waste Disposal Canister (고준위 폐기물 처분용기 내진 해석 모델 개발)

  • Choi, Young-Chul;Yoon, Chan-Hoon;Kim, Hyun-Ah;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.316-324
    • /
    • 2014
  • In the underground 500 m depth, the high level radioactive waste disposal system is made by boring the tunnel in the base rock and putting the high level waste disposal canister that is the surrounding form with the buffer material. According to the many statistics, it is the tendency that the earthquake increases in the Korean peninsula every year. In case that the earthquake is generated, the disposal canister in the rock mass can be broken due to the shearing force in the underground. Furthermore, a major environmental problems can be caused by the radioactive harmful substances. In this study, the earthquake-proof type buffer material was developed with the protection method safely on the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-proof type buffer material was evaluated by using ABAQUS.

An Automatic Collision Avoidance System for Drone using a LiDAR sensor (LiDAR 센서를 이용한 드론 자동 충돌방지 시스템)

  • Chong, Ui-Pil;An, Woo-Jin;Kim, Yearn-Min;Lee, Jung-Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2018
  • In this paper, we propose an efficient automatic control method for the collision avoidance of drones. In general, the drones are controlled by transmitting to the flight control (FC) module the received PWM signals transmitted from a RC controller which transduce movements of the knob into PWM signal. We implemented the collision avoidance module in-between receiver and FC module to monitor and change the throttle, pitch and roll control signals to avoid drone collision. In order to avoid the collision, a LiDAR distance sensor and a servo-motor are installed and periodically measure the obstacle distance within -45 degrees from 45 degrees in flight direction. If the collision is predicted, the received PWM signal is changed and transmitted to the FC module to prevent the collision. We applied our proposed method to a hexacopter and the experimental results show that the safety is improved because it can prevent the collision caused by the inadvertency or inexperienced maneuver.

Deep Learning-Based Spatio-Temporal Earthquake Prediction (딥러닝 기반의 시공간 지진 예측)

  • Kounghoon Nam;Jong-Tae Kim;Seong-Cheol Park;Chang Ju Lee;Soo-Jin Kim;Chang Oh Choo;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Predicting earthquakes is difficult due to the complexity of the systems underlying tectonic phenomena and incomplete understanding of the interactions among tectonic settings, tectonic stress, and crustal components. The Korean Peninsula is located in a stable intraplate region with a low average seismicity of M 2.3. As public interest in the earthquake grows, we analyzed earthquakes on the Korean Peninsula by attempting to predict spatio-temporal earthquake patterns and magnitudes using Facebook's Prophet model based on deep learning, and here we discuss seismic distribution zones using DBSCAN, a cluster analysis method. The Prophet model predicts future earthquakes in Chungcheongbuk-do, Gyeonggi-do, Seoul, and Gyeongsangbuk-do.

Reed-Solomon Encoded Block Storage in Key-value Store-based Blockchain Systems (키값 저장소 기반 블록체인 시스템에서 리드 솔로몬 부호화된 블록 저장)

  • Seong-Hyeon Lee;Jinchun Choi;Myungcheol Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.102-110
    • /
    • 2024
  • Blockchain records all transactions issued by users, which are then replicated, stored, and shared by participants of the blockchain network. Therefore, the capacity of the ledger stored by participants continues to increase as the blockchain network operates. In order to address this issue, research is being conducted on methods that enhance storage efficiency while ensuring that valid values are stored in the ledger even in the presence of device failures or malicious participants. One direction of research is applying techniques such as Reed-Solomon encoding to the storage of blockchain ledgers. In this paper, we apply Reed-Solomon encoding to the key-value store used for ledger storage in an open-source blockchain, and measure the storage efficiency and increasing computational overhead. Experimental results confirm that storage efficiency increased by 86% while the increase in CPU operations required for encoding was only about 2.7%.

A Study on the Advantage with Staged Construction Procedures and Full-Height Rigid Facing of Geosynthetic Reinforced Soil Retaining Walls (보강토옹벽에서 단계시공과 일체형 강성벽체의 이점에 관한 연구)

  • Won, Myoung-Soo;Kim, You-Seong;Tatsuoka, Fumio
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.17-23
    • /
    • 2007
  • To construct an ideal geosynthetic reinforced soil retaining wall (GRS-RW), the facing of the wall should be flexible enough to accommodate a large deformation of the supporting ground and to develop the large tensile force in reinforcements during wall construction as long as the stability is ensured, but should be rigid enough to be stiff and stable as well as durable and aesthetically acceptable for a long life time when the wall is in service. Facing conditions during the construction and service of the wall are quite different. So it is difficult to be satisfied all these conditions with the current construction method which is mainly used in reinforced wall construction in Korea. Most of this contradiction could be solved by the staged construction procedure. According to the results of cases and references analyses, stage construction procedures make it possible to accommodate large deformation of the supporting ground and backfill without losing the stability of the wall, and to derive the tensile strength of reinforcement causing deformation of the facing. When the facing is a full-height rigid one, it also appeared almost impossible to occur a local shear failure of the active zone, and pull-out failure of reinforcements. Therefore, GRS-RWs having a full-height rigid facing have been constructed by the staged construction procedures that matched well with the theory of reinforced soil, which had outstanding stability and durability, and thus could be used for railways and bridge abutments in Korea in the future.

  • PDF

Development of the Purlin Hanging System Form for the Girder Bridge Slab and Economic Analysis (거더교 상판 콘크리트 타설용 거푸집 개발 및 경제성 분석)

  • Lim, Jeeyoung;Kim, Sunkuk;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.271-278
    • /
    • 2016
  • In the case of South Korea, steel girder bridge (steel box or H-steel) and PSC (Pre-Stressed Concrete) girder bridge are the representative upper structures of railroad and road bridges. These structures account for 75% of the total bridge constructions and 80% of the total construction cost. Since the form work for concreting bridge slab is difficult, various construction methods developed and applied. However, several problems in those methods did not solve partially, including cost increase by material loss and rise of labor costs, quality deterioration by unskilled workers, increased construction time by complicated method, reduced productivity, safety accident by high place work, difficult transportation by big member, and rise of maintenance cost by material characteristic. Alternative method is needed to solve problems of as-is methods. Therefore, the purpose of this study is development of the purlin hanging system form for the girder bridge slab and its economic analysis. Through the findings of this study, it was verified that the purlin hanging system form is possible 60% reduction in cost and 80% reduction in time as comparison with conventional method.

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.