• Title/Summary/Keyword: 철도제동시스템

Search Result 67, Processing Time 0.049 seconds

Simulations for an ASCU of a Train Brake including a Pneumatic Model (공압모델이 포함된 철도차량 제동 ASCU 시뮬레이션)

  • Kim, Ho-Yeon;Kang, Chul-Goo
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93-97
    • /
    • 2010
  • Wheel skids may occur during train operations due to low adhesion at the wheel-rail contact point abnormally, and the skids, in turn, result in flats appearing on the wheels, which affect safety and ride comfort significantly. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents simulation studies on an anti-skid control unit (ASCU) with a brake system of a rolling stock including a pneumatic model for brake power supply and dump valve operation.

  • PDF

Control Algorithm of Thyristor Double Converter Power System for Railway Power Substation (철도 변전설비를 위한 싸이리스터 더블 컨버터 파워 시스템의 제어 기법)

  • Moon, Dong-Ok;Lee, Chang-Hee;Kim, Young-Woo;Jang, Young-Hun
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.61-62
    • /
    • 2015
  • 본 논문에서는 철도 변전설비를 위한 싸이리스터 더블 컨버터 파워 시스템의 제어 기법을 제안한다. 싸이리스터 더블 컨버터는 기존 시스템과는 다르게 전동차의 제동 시 발생하는 회생 에너지를 AC 모선으로 환원 가능하다. 제안한 제어 기법에서는 부하 상황에 따른 더블컨버터의 모드전환을 통해 안정적인 전원의 공급과 동시에 에너지 효율을 상승 시킬 수 있다. 10kW급 시작품을 제작하여 제안하는 제어 알고리즘의 타당성을 검증하였다.

  • PDF

Development of Economical Run Model for Electric Railway Vehicle using Genetic Algorithm (유전알고리즘을 이용한 철도차량 경제운전 모델 개발)

  • Lee, Tae-Hyeong;Park, Chun-Su;Choe, Seong-Hun;Kim, Seok-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.364-366
    • /
    • 2007
  • 본 논문은 철도차량이 주행하는 선로에 존재하는 수많은 곡선과 경사, 속도 제한 조건 때문에 열차성능해석 계산시 열차의 견인, 제동 특성이 비선형이기 때문에 해석적인 방법으로 해를 구하는데 어려움이 많은 경제운전 문제를 운행 시간 여유분을 고려하여 에너지 소비를 최소화하는 운전 모형을 제시한다. 경제운전모형을 한국형 고속열차에 적용하여 그 타당성을 입증하였다.

  • PDF

Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles (도시철도용 전기기계식 제동장치의 특성시험)

  • Kim, Min Soo;Oh, Seh Chan;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

Development and Test of Inverter for Regenerative Power of DC Traction Power Supply System (직류급전시스템의 회생 전력 활용을 위한 인버터 시험설비 개발 및 성능시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Kim, Yong-Ki;Kim, Jung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.254-259
    • /
    • 2009
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. Electric multiple (EMU) in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system and the replacement cycle of brake shoe in EMU will be increased and dust due to mechanical braking decreased. This paper present the developed inverter for regenerative power and its test equipment. Test for developed inverter is performed at test equipment and is divided into three items, which are regeneration mode, active filter mode, and system link test.

Study on Brake System of Canada RAV Rapid Transit (캐나다 무인 운전 전동차 제동 시스템 고찰)

  • Ryu, Hyeon-Gyu;Choi, Cheol-Han;Eun, Jung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1646-1649
    • /
    • 2007
  • The optimal braking control system is determined according to the required operating condition, for example brake rate. On that reason each train has its own various special features. This paper describes a study on the Brake Control System of Canada RAV Rapid Transit which also has various special features, to help comprehensive concept of brake control system including Cross Brake Control System and Guaranteed Emergency Brake Rate.

  • PDF

A Study on Algorithm of Bogie Unit Braking System (차세대전동차 대차단위 제동시스템 알고리즘에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Park, Sung-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1916-1921
    • /
    • 2008
  • In the braking process of rolling stocks, the equivalent braking force is applied to the all bogies. However, the load applied to the front and rear bogie are different in the actual commercial traveling. In the case, since the different slip situation is occurred in each bogie, it is essential to use the independent anti-slip control per bogie unit in order to reduce the loss of braking force. In this paper, the algorithm about bogie unit braking is proposed and verified.

  • PDF

A Study on the Accurate Stopping Control of a Train for the Urban Rail Transit Using Kalman Filter (칼만 필터를 이용한 도시철도 열차 정위치 정차에 관한 연구)

  • Kim, Jungtai;Lee, Jaeho;Kim, Moo Sun;Park, Chul Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.655-662
    • /
    • 2016
  • Accurate stopping control is important for trains, especially now that many train stations are equipped with platform screen doors. Various algorithms have been proposed for accurate stopping control. However, most metro trains in South Korea use classic control algorithms such as PID control because other algorithms are too complex to realize. PID control has merits of simple structure and operation. However, PID control sometimes fails, and much time is needed to find the proper coefficients due to the long control period and the brake delay. We propose a control algorithm that uses a Kalman filter. The Kalman filter estimates the states at the time when braking starts. Then, a suitable control input is derived for proper control. System modeling and a computer simulation were performed with consideration of the brake properties and the period of the control system. The superiority of the proposed control algorithm is shown by analyzing stop errors.

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.