• Title/Summary/Keyword: 철도감속기

Search Result 27, Processing Time 0.021 seconds

Designed and Implement of the Discrete Time Kalman Filter for Speed Estimation of the Sensorless Hub Wheel Motor (속도센서가 없는 허브-휠 전동기의 속도추정을 위한 이산시간 칼만필터의 설계 및 구현)

  • Jeon, Yong-Ho;Yee, Gi-Seo;Cho, Whang
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2008
  • Since hub wheel BLDC Motor consisted of wheel and BLDCM (Brushless DC Motor) without gear reducer has high efficiency and low operation noise, it can be utilized to a driving wheel at some light rail systems. However, installing sensors for speedometer on a Hub-Wheel motor is not easy, so it requires a different speed control mechanism method for speed measurement. This paper introduces a speed control method based on simple mathematical model which uses discrete Kalman Filter to estimate and control the speed of the motor.

Line Voltage Regulation of Urban Transit Systems Using Supercapacitors (슈퍼커패시터를 이용한 도시형 철도의 가선전압 안정화)

  • Son, Kyoung-Min;Choi, Jae-Ho;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.481-487
    • /
    • 2009
  • This paper proposes a regulation method of DC line voltage for urban transit system fluctuated during the acceleration or deceleration by using supercapacitor. Supercapacitor is modelled electrically under the assumption of three different time constants of RC circuits with variable capacitances depending on the voltage. And its parameters are determined by the experimental measurements. The energy storage system using supercapacitors is installed based on this model, and the proposed model is tested through the simulations and experiments, and the controller for charging and discharging is designed. Finally, it is tested at Kyoungsan test site for the urban light rail road system and the energy saving effect is evaluated economically.

Development and Test of Inverter for Regenerative Power of DC Traction Power Supply System (직류급전시스템의 회생 전력 활용을 위한 인버터 시험설비 개발 및 성능시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Kim, Yong-Ki;Kim, Jung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.254-259
    • /
    • 2009
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. Electric multiple (EMU) in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system and the replacement cycle of brake shoe in EMU will be increased and dust due to mechanical braking decreased. This paper present the developed inverter for regenerative power and its test equipment. Test for developed inverter is performed at test equipment and is divided into three items, which are regeneration mode, active filter mode, and system link test.

A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Joon-Hyuk;Kim, Seog-Won;Kim, Sang-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.170-177
    • /
    • 2020
  • This study examined the clamping force control method and the braking performance test results of an electromechanical brake (EMB) using braking test equipment. Most of the studies related to EMBs have been carried out in the automotive field, dealing mainly with the static test results for various control methods. On the other hand, this study performed a dynamic performance evaluation. The three-phase interior permanent magnet synchronous motor (IPMSM) was applied to drive the actuator of the EMB, and the analysis was verified by JMAG(Ver. 18.0), which is finite element method (FEM) software. The current control, speed control, and position control were used for clamping force control of the EMB, and the maximum torque per ampere (MTPA) control was applied to the current controller for efficient control. The EMB's emergency braking deceleration performance was tested in the same way as conventional pneumatic brake systems when the wheel of a train rotates at 110 km/h, 230 km/h, and 300 km/h. The emergency braking time, with the wheel stopped completely at the maximum rotational speed, was approximately 73 seconds. The similarity of the braking time and deceleration pattern was verified through a comparison with the performance test results of the pneumatic brake system applied to the next generation high-speed railway vehicle (HEMU-430X).

Non-Destructive Diagnosis of Rotational Components of a Railway Vehicle Using Infrared Thermography and Pattern Recognitions (적외선열화상 이미지법과 패턴 인식을 이용한 철도차량 회전기기의 비파괴 진단)

  • Kwon, Seok Jin;Kim, Min Su;Seo, Jung Won;Kang, Bu Beong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.300-307
    • /
    • 2016
  • The faults in railway vehicle components may result in either the stoppage of the service and the derailment of the vehicle. Therefore, it is important to diagnose and monitor the main components of a railway vehicle. The use of temperature is one of the basic methods for the diagnosis of abnormal conditions in the rotational components of a railway vehicle, such as bearings, reduction gears, brake discs, wheels and traction motors. In the present study, the diagnose of the rotational components using infrared thermography and a pattern recognition technique was carried out and a field test was performed. The results show that this method of diagnosis using infrared thermography can be used to identify abnormal conditions in rotational components of a railway vehicle.

A Study on Cost Optimization of Preventive Maintenance for the Second Driving Devices for Korea Train Express (KTX 2차 구동장치에 대한 예방정비 비용의 최적화에 관한 연구)

  • Jung, Jin-Tae;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Although the second driving device of KTX, which consists of the wheel and the axle reduction gears unit, is a mechanically integrated structure, its preventive maintenance (PM) requires two separate intervals due to the different technical requirements. In particular, these subsystems perform attaching and detaching work simultaneously according to the maintenance directive. Therefore, to reduce the unnecessary amount of PM and high logistic availability of the train, it is important to optimize PM with regard to reliability-centered maintenance toward a cost-effective solution. In this study, fault tree analysis and reliability of the subsystems, considering the criticality of the components, were performed using the data derived from field data in maintenance. The cost optimization of the PM was derived from a genetic algorithm considering the target reliability and improvement factor. The cost optimization was derived from a maximum of the fitness function of the individual in generation. The optimal TBO of them using the genetic algorithm was 2.85x106 km, which is reduced to approximately 21% compared to the conventional method.

Development and performance evaluation of traction system for steep gradient and sharp curve track (급구배 및 급곡선 궤도 추진시스템 개발 및 성능 평가)

  • Seo, Sungil;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.493-501
    • /
    • 2016
  • In this study, core technologies of a traction system on a mountain tram operating on the track of mountain road full of sharp curves and steep gradients were developed. In domestic mountain resort areas, sometimes the transportation service is not provided in winter because of ice and heavy snow on roads, so a mountain railway service independent of the climate and geographic conditions is needed. A traction system was designed taking into account of the power of a traction motor to climb the gradient of 120 ‰, which is common in domestic mountainous areas. and power transmission system was designed to consider the installation space for the traction system. In addition, a reduction gear and a propeller shaft were developed. An elastic pinion was developed and applied to the rack & pinion bogie system for steep gradient so that noise and vibration generated by contact between the steel gears could be reduced. Impact comparison tests showed that the vibration level of the elastic pinion is one-third lower than that of previous steel pinion. Independent rotating wheels and axles were developed for the bogie system to operate on the sharp curve of a 10 meter radius. In addition, the band braking system was developed to enhance the braking force during running on the steep gradient. A test for the braking force showed it exerts the required braking force. The performance of the developed core components were verified by the tests and finally they were applied to the bogie system running on the track of steep gradient and sharp curve.